QMesh is a novel mesh networking protocol designed to provide rapid self-healing and streaming capabilities to mesh networks in order to allow for voice communications. QMesh uses synchronized flooding to provide for self-healing as well as the ability to stream data. QMesh applies two techniques to the LoRa Chirp Spread Spectrum (CSS) waveform in order to make QMesh work: Coded Chirp Spread Spectrum (CCSS) and Chirp Offset Multiple Access (COMA).
Synchronized Flooding
A flooded mesh network is a mesh network where every node repeats they packets they receive. Synchronized flooding is a form of flooding where every node repeats the data at the same time. Synchronized flooding allows for self-healing an isochronous data transfer, enabling meshed voice communications. A major drawback of synchronized flooding, however, is the massive self-interference that occurs from multiple nodes retransmitting at the same time. QMesh uses two techniques, Coded Chirp Spectrum (CCSS), and Chirp Offset Multiple Access (COMA), that reduces the self-interference and allows for reliable communcation.
Coded Chirp Spread Spectrum (CCSS)
Forward Error Correction (FEC) is essential to getting reliable communications in the presence of the large amount of self-interference that occurs with synchronized flooding. As a result, QMesh implements a sophisticated form of FEC on top of LoRa, currently Reed-Solomon-Viterbi (RSV). RSV is a combination of convolutional coding concatenated with Reed-Solomon coding. Used in the past in such applications as interplanetary spacecraft, RSV increases communication reliability for both weak signals as well as against interference.
Chirp Offset Multiple Access (COMA)
Chirp Offset Multiple Access (COMA) is a technique that adds randomized, controlled offsets to CSS transmissions in order to reduce interference and allow the receiver to receive one of the transmissions. COMA adds offsets in two ways: by "wobbling" the center frequency of the transmission (up to +/-25%), and by adding a timing offset of up to one half of a symbol period.
LoRa has two potential ways to “spread out” transmissions in order to increase the likelihood of successful capture. The first technique involves spreading out transmit energy at the chip level. Given that LoRa chirps are not continuous frequency sweeps, but rather a series of discrete chirps, slightly shifting the frequencies of the chips should reduce their interference between them. Likewise, by shifting the chirps in frequency and/or time, it should be similarly possible to reduce the amount of interference between colliding packets and increase the likelihood of successful capture. Figures 2 and 3 show how frequency and time shift reduce overlap between transmissions and increase the likelihood of successful capture.
Frequency Hopping Spread Spectrum (FHSS)
QMesh also supports "slow" (i.e., per-packet) frequency-hopping spread spectrum. Spreading out transmissions across multiple channels provides an extra measure of robustness to QMesh communications.
Please see the GitHub Wiki for additional up-to-date information about QMesh.
QQ: how many clients and individual voice transmissions do you estimate can be handled by the system, and how does that scale with the number of nodes?