3D Printed Opensource Tools

Experimenting with 3D printed tools.

Similar projects worth following
Hand and power tools, as well as HIDs are cheap, reliable, and easily accessible. But their production is still done in large centralized factories. 3D printing technology and cheap, opensource electronics continue to improve bringing the decentralization of manufacturing one step closer.

We are experimenting with different designs to see how close current 3D printing technology can bring us to production-quality tools you can buy in the store. We're also experimenting to see what modifications we can make to store-bought tools to enhance and customize their use.

As we develop tools, we will list them below including a link to their page on Thingiverse. 

Check out project logs if you're curious about how we developed them. 

1. Screwdriver: 9g servo driven, 5-6 volt powered, thumb joystick actuated, Arduino Nano controlled:

2. Mini-Editing Keyboard: Arduino Micro-Pro controlled USB HID:

  • Custom HID: Mini-Editing Keyboard

    ProgressTH08/04/2019 at 09:16 0 comments

    August 4, 2019 | ProgressTH  If you've ever tried to edit any amount of text on your smartphone or tablet you may have wanted a better way to copy/paste, select text, and move the cursor around with something other than your finger.

    Maybe some physical buttons even... 

    At least we did. And that's why we made this first prototype of a mini-editing keyboard now up on Thingiverse here

    It's built around an Arduino Pro Micro and 4-pin mini-push buttons integrated with a 3D printed case and keys. The code relies on Arduino's keyboard modifiers found here

    The electronics use some pretty crude solder tracing (electronics are not our expertise). The idea is to get some user experience using this HID and seeing if its worth redesigning it, miniaturizing it further, or improving it in any way. 

    We're designers mainly, not electrical engineers or coders, but if the project looks viable, we'd like to try out KiCad and doing a custom board to reduce the device's size constraints and allow us to focus entirely on ergonomics while possibly sneaking in a few more buttons. 

    It would be a great way of experiencing the whole process and all of its steps even if in the future we outsource these steps for prototypes/short-run manufacturing. 

    Another interesting possibility is creating HIDs for people unable to use a standard keyboard or mouse because of physical limitations.

    Follow on Twitter here. We're also on Instagram now.  

  • 3D Printed Screwdriver: Stability

    ProgressTH01/11/2019 at 21:53 0 comments

    January 12, 2019 | ProgressTH The original 3D files for our 3D printed electric screwdriver depended on hot glue to keep pressure from the servo coupler and bit holder from transferring to the servo. The coupler was glued to one 608zz bearing. In theory, the bearing should have kept the coupler straight. 

    In practice, the coupler and bit created immense wobble to the point where it was difficult to get the screwdriver to line up with bolts we were trying to drive. Also, if the hot glue gives during use, any pressure put on the bit will transfer directly to the servo itself. 

    The solution was redesigning everything related to motion control: 

    • The bearing housing was extended to fit two bearings; 
    • The coupler and bit holder were integrated into a single piece and passes through both bearings before interfacing with the servo arm coupler;
    • The bit holder portion of the new piece rests on the bearings. No matter how hard you push, pressure cannot be transferred onto the servo. 

    Now, the only wobble is from the screwdriver fitting slightly loose in the bit holder and this is barely noticeable. It is still not perfect, but at least for this application, it works well enough. 

    Getting perfect motion control out of a 3D printed power tool is important. For an electric screwdriver, a little wobble is acceptable. For anything moving at higher RPM's, wobble is unacceptable, not to mention dangerous.

    The diagram above doesn't show the original coupler and bit holder. It shows the first try at designing a bit holder that physically rests on the bearing instead of depending on hot glue to keep pressure off the servo. It had too much wobble, prompting the two-bearing design. 

    Follow on Facebook here or on Twitter here. 

  • 3D Printed Screwdriver: Going Cordless?

    ProgressTH12/12/2018 at 11:14 0 comments

    December 12, 2018 | ProgressTH We tried to make the screwdriver cordless. With 4 AA batteries, the 6v output sped up the servo nicely and allowed us to use it wherever we went. 

    But then again, we were only driving M4-M3 bolts at our workbench and the added bulk of the new cordless design negated the comfortable and small profile of the original design. 

    The above picture shows the cordless version at the top. Just below it is our corded version which we've chosen to use day-to-day. Below that are two earlier prototypes. 

    Maybe there are better batteries that we can use, but in the mean time, we're using this buck step down power supply (pictured above) to take a 9v wall adapter and stepping it down to 6v. The 5v wall adapter was turning the servo too slow and the data sheet for the servo says it can take a little over 6v. 

    The power supply fits easily into the handle of our corded version. 

    Follow on Facebook here or on Twitter here. 

  • 3D Printed 9g Servo Electric Screwdriver

    ProgressTH11/28/2018 at 19:32 0 comments

    November 29, 2018 | ProgressTH Here is our first entry to our 3D printed opensource tool project — a 3D printed, 5v powered, 9g servo driven, thumb joystick actuated, Arduino Nano controlled electric screwdriver. 

    All the files are available here on Thingiverse. It includes a video showing the screwdriver in action and a quick look inside with a few comments on its function. 

    It began as an experiment out of curiosity to see if spare parts laying around could be used to turn a set of jeweler's screwdrivers. We had some 400-500 M3 bolts to drive for an upcoming project and thought it would be nice if we could quickly hack together a solution. And we did! 

    Yes, we could have taken an hour to go to the store and buy an electric screwdriver, or ordered one online since we had about a week before our big project would begin. but in just one day we designed, printed, and had a functioning prototype that was up to the task. In 2 more days, we had a final prototype, the one you see in the picture above. 

    In this picture (just above) you can see the design process from linking up the electronics and the screwdriver to the servo, to several handle designs with the top being the final outcome.

    The thing we like about making our own tools is that we can make them exactly as we want, with the exact feel, look, and function. We also learn a lot in the process.  

    What's next? We're not really sure. We like this screwdriver so much we're interested in improving it further (speeding up the servo, using a different type of motor altogether, making it cordless, etc.). We're also pretty pleased with what 3D printing enabled us to do here where we'll experiment with some other basic power tools and tool modifications. 

    Follow on Facebook here or on Twitter here. 

View all 4 project logs

Enjoy this project?



Similar Projects

Does this project spark your interest?

Become a member to follow this project and never miss any updates