LoRa Base Module with ATMEGA328P


 FEB 25, 2022

I had a need to build a reliable LoRa device, in order to do some testing regarding range etc, for an upcoming project on a friend’s farm. The device needs to be ultra-cheap to manufacture, as well as little power as possible. To achieve this, I decided on using the RA-02 ( From AI Tinker, not sponsored) as well as an ATMEGA328P, which consumes very little current when put to sleep… ( The radio will be on standby the whole time though..)

Building this with a standard Arduino, or another ATMEGA powered development board can be quite messy ( as the picture below shows… )

RA-02 LoRa module with ATMEGA328P PCB – Quite messy !!

A standard Arduino will be even worse, as you need level conversion on the SPI pins, due to the fact that the RA-02 is a 3.3v device, with the GPIO, not being 5v tolerant (Yes, this is true, some other posts on Youtube and similar conveniently leave out this very important little caveat… )

This problem thus warranted a dedicated custom PCB, to be designed in stages, and thoroughly tested of course… And while doing that, I needed to design something that was modular and useable.

I came up with the following design, as a stage one prototype:

Stage 1 LoRa Base Module Prototype

The PCB is basically an Arduino Nano style PCB ( as far as IO is concerned ), with level conversion on the SPI lines ( SCK, MISO, MOSI, SS) as well as a Lora reset and IRQ pin ( which will be essential to wake up the processor later ).

As the prototype will mostly be used in the lab, with some outdoor tests later, provision was not made for battery charging circuitry. Two LDO regulators, 5v and 3.3v provide power to the ATMEGA328P and RA-02 from a DC input of 7.5 to 12v.

Level conversion is fixed at bi-directional 5v to 3v logic levels.

All unused GPIO’s are broken out onto headers.

Code can be uploaded to the MCU via ICSP or a USB-to-serial converter, as I did not add those on board, to save space and power later.

Control Pins are as follows:

RA-02 ModuleATMEGA328P
IQR(DIO0)D2 ( Interrupt 0 )
DIO1Not broken out on stage 1 Prototype
DIO2Not broken out on stage 1 Prototype
DIO3Not broken out on stage 1 Prototype
DIO4Not broken out on stage 1 Prototype
Pin connections between RA-02 and ATMEGA328P

The Schematic diagram are listed below

Schematic Diagram – Page 1
Schematic Diagram – Page 2
PCB – Top
PCB – Bottom


The board is compatible with the LoRa library from Sandeep Mistry. Other libraries may work as well but were not tested yet.

A very basic test sketch follows below:
Note that this sketch does not have any power-saving. It is purely used to do a very basic radio test…
More detailed code will be released in later stages of the project ( more on that later )

#include <SPI.h>              // include libraries
#include <LoRa.h>

const int csPin = 10;          // LoRa radio chip select
const int resetPin = 9;       // LoRa radio reset
const int irqPin = 2;         // change for your board; must be a hardware interrupt pin

byte msgCount = 0;            // count of outgoing messages
int interval = 2000;          // interval between sends
long lastSendTime = 0;        // time of last packet send

void setup() {  Serial.begin(9600);                   // initialize serial  while (!Serial);
  Serial.println("LoRa Duplex - Set spreading factor");
  // override the default CS, reset, and IRQ pins (optional)  LoRa.setPins(csPin, resetPin, irqPin); // set CS, reset, IRQ pin
  if (!LoRa.begin(433E6)) {             // initialize ratio at 433 MHz    Serial.println("LoRa init failed. Check your connections.");    while (true);                       // if failed, do nothing  }
  LoRa.setSpreadingFactor(8);           // ranges from 6-12,default 7 see API docs  Serial.println("LoRa init succeeded.");

void loop() { if (millis() - lastSendTime > interval) { String message = "LoRa TEST"; // send a message message += msgCount; sendMessage(message); Serial.println("Sending " + message); lastSendTime = millis(); // timestamp the message interval = random(2000) + 1000; // 2-3 seconds msgCount++;...
Read more »