It can be very advantageous to create your own tools for your own work. They can better suit your needs than the tools available for purchase. You can eliminate unnecessary features and only include the ones you need. As a result, you might be able to build tools for much less cost than buying them commercially.

Apart from being a maker, I am also a videographer. So I needed an RGB video light. What I needed was an RGB light that was small, portable, magnetically attached to any metal surface, and could also accommodate accessories such as grids, diffusers, etc. but the lights with the kind of features I meant were costly. So I figured I could make one for a third of the cost. These requirements brought me to this project

This small 20W RGB video light can be fully 3D printed and is very simple to operate. You can switch on the light by pressing the button on the side once. By rotating the encoder, we can cycle through the hue value. After pushing the encoder, we can switch to the brightness control mode. We can adjust the brightness of the LED by rotating the encoder. If we push the encoder button again, we can switch back to the hue control mode. It's a one-knob operation.

Additionally, I included a magnetically attachable diffuser for softening the LED light, and we can also attach a honeycomb grid on top of it to reduce the light spill. I included a 1/4-inch thread on the bottom to attach to a camera to make it easier to mount this light. I also added a powerful magnet on the back so you can easily attach it to any metallic surface. It is powered by a 5000mah battery which can run up to 2-3 hours. It is also rechargeable via USB-C. Battery status can be checked using the 4 LEDs on the back of the light. Now let's see how to build one yourself 

**Wait a moment to load all GIFs on this Page

Supplies

Supplies

**This image might not contain all the tools for this project due to space constraints.

Parts

Tools

  • Soldering kit
  • Wire cutter
  • Third-Hand Soldering Tool
  • Screwdriver 
  • Tweezer 
  • Nose Plier
  • 3d printer (grey, white, orange PLA)

Step 1: Designing and 3D Printing

Designing and 3D Printing

I Used Fusion 360 to plan and design this project. The main body is designed to hold the battery, BMS, encoder, magnets, power switch and the 1/4-inch thread. I also provide small gaps for ventilation on the backside.

The led holder will help to hold the led PCB and magnet for the accessories

The LED diffuser is used to soften the LED output it also contains some magnets that help it to attach to the LED panel. also, it needs to be printed in white PLA or transparent 

The honeycomb grid is designed to minimize light spill and features magnets for easy mounting on LED panels. It should be printed in black.

I also designed a knob for the encoder. included a three-ring RGB logo. I printed it in Orange PLA

After the designs, I exported all of the files to STL and 3d printed it. you can find all design files attached below

Attachments

Step 2: Wiring Diagram

Wiring Diagram

Please refer to the following wiring diagram when assembling the project. I used 30 AWG wires for the signals 20 AWG wires for the battery output and LED power cables. You can find the LED panel wiring diagram in the step below.

Step 3: Uploading Code to XIAO ESP32C3

Uploading Code to XIAO ESP32C3

I always like to upload the code to the microcontroller before assembly. I am using Arduino IDE to flash the code. follow...

Read more »