Solar Harvesting (from the bench)

A project log for Open SolarMote

A perpetually running wireless sensor mote.

dhqdhq 05/13/2017 at 19:000 Comments

I am using a small solar panel for each mote. The specs are VOC = 3.3V and Isc = 100mA.

To check the harvester capabilities I used the Analog Discovery programmable voltage source to emulate a solar panel output voltage.

TI uses the term cold start to describe the point when the device starts to harvest energy. This is essentially a very efficient boost converter.

With an input voltage of 366 mV it can be seen that the nano-power boost converter gets out of cold start mode. Since the PIC24 is capable of operating from 1.8V this in theory can work. The huge drops however means that the MCU will reset once the Brownout detector kicks in. This is slightly higher that the 300mV quoted from the datasheet. The best I could get from the various tests was 345 mV stepping it up in increments of 5-10mV.

Ramping up the voltage to 494 mV and now we're in business. The output resistor as shown on the image below have programmed the buck to output 3V

One thing to notice when playing with this setup is that you can't change the input voltage really fast otherwise the BQ25570 won't track the input and the output voltage will collapse.

Ramping down the voltage up to 246 mV the output is 1.32V. This is not really usable for the system however.