Close

The 14500 "Hat-like" Concept

A project log for Single-cell Li-Ion Powered UPS for Raspberry Pi

A simple yet complete UPS solution for most Raspberry Pi embedded applications, using a single-cell Li-Ion Battery.

bud-bennettBud Bennett 06/13/2017 at 18:050 Comments

OK, I'll admit it right up front...I stole the idea to hang the battery upside-down off of the Raspberry Pi header from Patrick Van Oosterwijck's LiFePo4wered/Pi+ project on Hackaday. Everything else is an extension of this ongoing project.

PaulV and I have been going back and forth about this Hat concept for quite a while. I'm not really enthusiastic because some of my headless Pi systems have very sensitive electronics hanging off the header, and so placing a 1MHz multi-Ampere switching regulator nearby is not high on my list. It would be OK if the system was not required to keep operating normally (like my heating system), but my seismometer must keep going as if nothing happened, so I'll be using the 18650 UPS for the seismometer and placing it reasonably far away from the sensing electronics and most probably shielding the UPS as well.

It is called "Hat-like" because there is no EEPROM on board to make it a true "Hat".

The physical nature of this UPS is its most important feature so I will start out with the 3D view.

The header jack and battery holder are the only items placed on the bottom of the board. It is designed to work with the type of case shown below. It probably won't fit the Official Raspberry Pi case because there is a maximum distance of 4.5mm from the header to the battery holder, which is not enough clearance for the larger case style. I want to keep that spacing short to avoid putting too much stress on the header which will be the only thing supporting the UPS. Of course it would also work without a case, if the Pi was mounted to a surface with stand-offs. 

The layout view should be considered next. Most of circuitry was directly ported from the UPS-14500-IS design. There are a few important considerations:

  1. The microUSB jack should probably be located to the left of the board so that the power cable doesn't interfere with the other ports of the Raspberry Pi.
  2. The push button reset switch had to be move to the top-side of the board for easy access.
  3. Because there are only two components on the bottom side of the board the goal was to make it no larger than required to support those components. As a result this PCB is a bit shorter, but wider, than the other 14500 UPS version. I believe that it is as small as possible.
  4. The two holes used for mounting the board through the battery holder are not required, and therefore deleted to make room for better bus width or component location.
  5. There is a cutout on the lower right to allow use with the planned case types.

There were some tradeoffs that had to be made. Note the VIN trace that cuts diagonally from the upper left corner of the board. It must cross the top side GND plane, which had to be compensated with lots of via hole to the bottom side GND plane.

The bottom side also has a wide trace cutting across the board to connect VOUT to the header +5V pins. This time the top side GND plane was used to jumper over that trace to keep the GND resistance low. The trace widths are probably much larger than needed, but it generally pays dividends to be conservative in that area. There aren't any critical components on the right quarter of the board so the GND plane in that area is almost a don't care. Note that the PCB could be smaller along the top edge, but that battery holder locator hole at the top right needs to be surrounded by the board.

Schematic Changes:

Here's the latest schematic that matches the layout above:

Discussions