New Updates Finally!

A project log for Anthromod Robot

A biomimicry inspired humanoid using soft tissues, soft actuators and rigid bones.

anthromodAnthromod 02/17/2020 at 15:130 Comments

So as things have started to straighten out I've been able to get on with some experimental designs over the last couple of weeks. 

I've started work on a film based muscle that's a bit like the Peano muscle except pneumatically driven.

After a few attempts with various polyethylene based sheets I ended up trying Sous-vide cooking pouches. These work quite well as they are designed for bonding together, no tiny pinholes, and are intended to resist pressure. They are also a composite of a nylon exterior and a polyethylene interior. This means I can bond the interior without (too much) risk of puncturing the exterior and damaging the muscle.

Whilst I can seal the pouches with a clothes iron, or a soldering iron I needed a way of keeping some areas of the muscle from bonding. These areas would form the air chambers. I tried normal paper and it worked well in preventing some areas from bonding, the paper was then difficult to remove. Whilst the paper might not have affected the movement of the muscle much, it was an obstacle to airflow through the muscle. 

I looked around for a solution when it dawned on me that edible paper was a thing. I found that paper based on potato starch was particularly easy to dissolve (well weaken and tear easily) in water. I've tried the potato paper method and it worked ok. The sheets I had were a little thick and caused a few tiny tears where I had stretched the top plastic layer too much when pushing with the soldering iron. But these were simple to fix.

I used a drag knife on a 3d printer to try and cut the paper, but the drag knife method often caught the paper or plastic I was trying to cut. I've ordered a small laser engraver that should be sufficient to cut the paper, and perhaps weld and cut the plastic directly. This should allow me to build smaller muscles, which would be a lot of use in actuating hands or faces.

I did a few tests that just used 'hand drawn' welds using a soldering iron. These started as pressure tests, for the 3d printed pneumatic connectors I was using. But I moved on to subdividing them into smaller channels and investigating how they buckled under pressure. 

I then moved on to combining 3 muscles together in a manner inspired by the deltoid muscle group. This worked to show that multiple muscles could be constructed on a single pouch, and then stay connected, whilst being folded into a 3 dimensional structure. Think of it as a robotic Pepakura model.

My last experiment was actually a software simulation of the film muscles in Blender 2.82. This update improved the cloth simulation inside Blender so that it could model pressure within an enclosed cloth volume. I don't expect great accuracy, or the ability to model forces well, but it might be useful to get an idea of amount of contraction possible and the sort of buckling that might happen.