Close

Phase Two

A project log for Hand Drive

A wheelchair attachment that allows any wheelchair to be powered in a rowing motion. It is 3D printable, open source, and available to all.

kate-reedKate Reed 08/14/2015 at 18:130 Comments

Phase Two

We are taking the hand drive to a new level for independent studies. We are completely redesigning it. We realized with our last model that we couldn’t move backwards, and that was a problem.

We are now remaking the hand drive without the free wheel mechanism. The free wheel was what was preventing the wheelchair from going backwards. We are making our own ratchet mechanism, which is very similar to the free wheel, but it allows us to go backwards. Instead of having one ratchet like the free wheel, it has two ratchets each on a different plane. Depending which ratchet is engaged, it allows the wheelchair to go either forward or backwards. The two ratchets are connected by cables which allows the user to disengage one ratchet and engage the other through one swift and easy motion. Our first model is almost done!

How it Works

Once we made our wooden prototypes it was time to start making 3D models. We started the modeling process with a clean slate. We made a new spider attachment that will fit more snug to the wheel, so hopefully it won’t pop off as easily. The gears for the ratchet are also on the spider attachment. We made the gears with a plate in between them so that the ratchets won’t slip out of place. Through testing the gears, we learned we don’t want the gear to curve as much, but want it to be more of a right angle. It really takes a minimal amount of distance for the gears to cover, for them to be functional.

The lever piece houses the ratchet and the cabling. The lever is on the outer side of the ratchet. The lever piece consists of a disk with holes placed for the ratchet pieces to fit into. It also has pulleys for the cables, and a hole through the center where it screws into the spider piece. The level isn’t as complex of a piece compared to the spider, but it has to line up and fit perfectly with the spider, which is a frustrating little challenge for us to have.

Frustrating

Once we really started to chug along with our model, disaster struck. Fusion, the program we had been using for modeling, had decided it didn’t like our model anymore and therefore it wouldn’t work. We ended up having to remodel the entire project in different files. We lost a day and a half of work time in this process.

Progress

Once we remade the models in different files, and got the project back to the point it was before, we started moving forward again. One of our design challenges was figuring out the springs in the design. The springs push the ratchets into the gear, and are essential to the design. In our initial wooden prototypes we used coil springs. The unfortunate part about those springs is that they are too bulky. We want our project to be as slim and sleek as possible, so we started looking into other options.

We ended up creating a spring from a piece of steel. It is a thin strip of steel that wants to stay straight. We found that if we use it in our design a little bent, it will want to stay straight- thus acting as a spring to get straight. We modeled and printed a prototype with this design. We found that the steel spring was pretty hefty, and too much spring. We are going to see if we can get more flexible steel to tone it down a little bit.

Once we realized the steel spring was too hefty, we started to come up with an alternative. We made a design with the regular coil springs as a back up in case the steel doesn’t work. I am personally routing for the steel springs, because it is a much more elegant design.

Cables

Once we had figured out the basic ratchet mechanism, we had to figure out how to make it work with cables. Only one of the ratchet pegs can be down at a time, and depending on which ratchet is down determines whether the user is wheeling forward or backwards. The cables are used to easily switch which ratchet is down, thus changing the direction of the wheelchair.

The tricky part is figuring out how to use one cable to cause one ratchet to go down and one ratchet to go up. We were originally thinking the ratchets would each want to go a separate way naturally, because of the springs. When the cable was pulled, it would push one ratchet down and pull the other up. This wasn’t the most elegant solution, because the cables were getting tangled with the gear when the ratchets spun.

Our new solution is to have the ratchet pegs be different. One ratchet peg attaches to the top of the cable and another ratchet peg attaches to the bottom. This way when the cable is pulled, it pulls one down by its back, and one up by its toes. We haven’t tested this solution yet, but it is looking good.

Bikes

Throughout the project, we are finding more and more similarities to a bike. All of the cabling for our project is bike cabling, and we are going to use a bike break for the handles. It is interesting to compare a wheelchair to a bike and see the similarities.

Discussions