Change the Planet with PSoC® IoT Design submission questions:

1. What planet-changing IoT project do you want to build?  

The aim of the project is to build a predictive maintenance system for any general Industrial Equipment by analyzing the time series data of temperature , Vibration and Acoustic signals and predicting the failure before hand using ML models on the cloud servers. 

acquire factory

Prime candidates for Predictive Maintenance include machines that:-
• Run 24 hours a day
• Perform functions that are crucial to the production process 
• Have high failure consequences
• Are expensive to maintain
• Could pose a risk to personnel safety or the environment.

powergenome

Examples include machines used in continuous processes, e.g. plastic production, where a service interruption could ruin an entire production run. Those with high failure consequences include turbine generators and equipment located in hazardous environments. Also consider machines that experience frequent failures because of a tough operating environment — common in mines, cement plants, and fertilizer plants.

Initial signs of wear mechanical typically create high-frequency noise with could be detected using accelero-meters and microphone which are placed over the motor, data is collected and processed on the microcontroller itself using Fast Fourier Transform (FFT). Direct sending all collected data from the sensor node would put strain on the existing network bandwidth and also will lead to more power consumption. Hence the only FFT data is then sent to gateway. Looking at the steady-state vibrations, at the time of installation, thresholds were set.  

The data is then used to build a ML model , train it so that later on it could predict anomalous behavior of the equipment.  Then, connect the anomaly to the appropriate work task to minimize production loss, quality issues, or other collateral damage. 

Our system resorts energy harvesting to power the sensor nodes, with neither cabling for power supply (unadvisable in hazardous areas) nor batteries (which require regular maintenance).  The thermal dissipation around the motor is  used to generate a voltage through a thermoelectric generator. The voltage generated when fed into  low voltage boost converter can give regulated voltage output to charge a  supercapacitor. This in turn powers up the whole system in regular interval of time. 

Examples: 

• Compressed Fluid Leaks

• Vacuum leaks

• Steam trap failures

• Bearing condition monitoring

• Electrical arcing/tracking

• Fan and motor unbalance

The overall energy savings and minimum waste due this is invaluable towards developing  sustainable environment on planet. 

Transition from Reactive using SmartSense

2. Which Cypress PSoC® 6 Dev Kit would you like to use for the project and why? (you can use multiple kits)

I would like to use PSoC® 6 WiFi-BT Pioneer Kit (CY8CKIT-062-WIFI-BT) for this project as this the TFT display shield board include in the kit has 6-axis motion sensor, and a digital microphone which essential for monitoring the machine conditions. The Industry-leading CapSense would facilitate the Technicians to interact with the device even in harshest factory environment example wearing gloves . The display on the screen could be used alert the the coworkers nearby.  The data from the sensor is used transmitted via Bluetooth 4.1 to the gateway node and also the prediction results are being received from cloud to be displayed on the screen. 

3. How will you use AWS IoT or other cloud services in your project? 

I would like use AWS IoT service for the below mentioned tasks:

  1. The collection of data to build and train a model.
  2. The deployment of models back to the factory sensor nodes.
  3. The evaluation of data to perform local inference.

First we collect data from the machines or  equipment that you want to make predictions on and build ML models using AWS services in the cloud. Then we want to transfer the ML models back to the on-premises location where they are used with a simple AWS Lambda   function to evaluate new data sent to a local server running AWS Greengrass.

4. What is your experience level with embedded IoT Design ?

I'm currently a final year undergraduate in the Field of Instrumentation & Electronics Engineering from India. I have developed a low power IoT sensor node harnessing energy from microbial fuel cell to detect forest fires which was a semifinalist in NASA-iTech Cycle 2019.  I was also awarded the winner of Anveshan Design Fellowship here at India which is fellowship program hosted by ANALOG DEVICES India. Most of my projects that I have worked on had IOT as an integral part. I would love to have some of my own, so I can keep working with PSoC and explore their industry leading technologies.

Below is a link to my Linkedin profile.  https://www.linkedin.com/in/pratyush-mallick-cetb/