TouchYou: a wearable touch sensor and stimulator

TouchYou, is a pair of wearable interfaces that enables affective touch interactions with people at long distance.

Similar projects worth following
The TouchYou is a pair of sensitive and stimulation interfaces that is able of measur-ing the touch and of remotely providing a multi-sensorial stimulation, simulating the touching of the skin. The system consists in the sensitive interface, which is a weara-ble and flexible touchpad like sensor for detecting the position of the touch and its pressure against the skin, and its pair, the stimulation interface. The stimulation is provided by a matrix of electrodes connected to an electrical stimulator (e-stim), vibration motors and flexible heaters for simulating the temperature of the skin.

The interface was developed with the aim of applying haptic sensing and stimulation technologies for reducing the problem of the lack of physical interaction between couples living apart. We developed a pair of sensing and stimulation interfaces that are portable, wearable and can communicate wirelessly with computers and smartphones for enabling the transmission of the touch over the internet.

The TouchYou is a pair of touch sensitive and stimulation interfaces for detecting the touch and simulating it in a long distance.  The primary use is for transmitting the touch for couples in a long distance relationship, but the touch interface can be used as a smart skin for sex robots and sex toys, besides the possibility of the couple using their own bodies for stimulating their partner remotely during the virtual sex. The TouchYou presents as a good option to overcome the problem of lack of physical contact for couples and relatives that are living apart, and its technology is promising in the field of human-computer interaction.  

One of the outputs of this project was developing a low cost method for building a flexible and wareable capactive touch interface, which can be done at home.

This is an ongoing project. The touch sensor is already developed, and it is able of measuring the position of the touch and the force applied. Its interface also can transmit the touch data to a computer by bluetooth.
The next step is to improve and test the touch stimulator interface.

plain - 3.60 kB - 08/27/2018 at 03:29


Standard Tesselated Geometry - 329.38 kB - 08/27/2018 at 03:29


Standard Tesselated Geometry - 37.48 kB - 08/27/2018 at 03:28


Standard Tesselated Geometry - 32.70 kB - 08/27/2018 at 03:28


sch - 151.13 kB - 08/27/2018 at 03:28


View all 7 files

  • Design of the touch stimulator

    Leonardo Gomes08/27/2018 at 04:07 0 comments

    The touch stimulation interface was designed for providing the feeling of being touched remotely. This interface is wearable and its output, or stimulation response, depends on the touch detected by the sensitive interface. The design of the touch stimulation interface considered meeting the requirement that it should create a sensation of a moving touch through the skin, not only by mechanical stimulation, but also by other stimuli. Besides the vibrations, the interface is able of stimulating thermally and electrically the skin and muscles.

    For covering a relatively large surface of the skin while the interface was being worn, we decided to place the electrodes in a matrix pattern, where each element of the matrix is a pair of electrodes. We used two types of electrodes: 15 spike dry electrodes  and 9 wet electrodes, combined in a total of 12 pairs. The using of spike dry electrodes was preferable in this design, because those electrodes don’t need the use of conductive gel and have a better performance when in contact with hairy skin, but the total required number wasn’t available at the moment of building the prototype. The electrodes of the lines and columns (3x4) were connected to each other respectively, and a 3D printed cap was fitted over the head of each electrode and wire, keeping the connection safe and fixing the set in the elastic fabric. 

    For creating the sensation of a moving touch, we change the pair of conducting electrodes by changing what line and column are active, and the electrical stimulation will occur in the closest pair of electrodes. In addition to the electrical stimulation, we included 6-coin vibration motors, as shown in the figure below, between the electrode pairs. The motors were used for creating an additional sensation of touch, for example simulating the moment that the finger touches the skin or when the finger slides from one point to another. 

    The third touch stimulation method is by thermally stimulating, simulating the temperature of the human body. For creating this effect, we used 3 flexible heaters, or polyamide heating film plate. Each heater had 30x40 mm dimension, could be supplied with 5 V and provide 1 W of power, which was enough for keeping their temperature at about 37°C. The heaters were glued to a smaller elastic fabric (A) and then, fixed over the initial set of electrodes and motors by using velcro (B). We also installed temperature sensors for each heater, so we could control the temperature for no overheating the system and the skin in contact with the interface. 

    The touch stimulation interface can be worn in any part of the body, and in the figure below we show the interface being worn in the arm.

  • Testing the touch sensor

    Leonardo Gomes08/27/2018 at 03:57 0 comments

    After programming the arduino of the touch sensor and making it transmitting the touch information to the computer, I designed a Python script for plotting the touch (file available)

    In this stage, I plotted the touch as a image that updates in realtime as changes in the touch are detected. The force applied during the touch is represented by a reddening of the pixel representing the place where was touched.

    In the next stages, we will use the information of the touch to control the stimulation interface and to control other stuff.

     See the video below!

  • Hardware for touch and force detection

    Leonardo Gomes08/27/2018 at 03:50 0 comments

    The hardware for measuring the touch sensor and for communicating with the computer and the stimulation interface of the TouchYou needed to meet some requirements, for example being portable and having wireless communication. For reading the touch sensor, I used a breakout board with the MPR121 capacitive touch sensor controller. This module features twelve electrodes detection, configurable I2C address, a filtering system with debounce, and proximity detection and auto-calibration. The interface with the touch controller was made by using an Arduino Pro Mini board, with was connected with a HM10 Bluetooth module for the wireless communication. We also included a 3.7V Lipo Battery and a USB Lipo charger module, for hardware portability. A button for selecting the function mode, a LED and a vibration motor were also included for visual and tactile response for the hardware functioning. 

    In addition of measuring the position where the touch occurred, we also measure the pressure (or the force) of the touch. For the pressure sensing function, we chosen to use two force-sensitive resistors (FSR) attached to the surface underneath the touch sensor.

  • Building the flexible touch sensor

    Leonardo Gomes08/27/2018 at 03:46 0 comments

    In this build log, I would like to show how I built the touch sensor using the thermal transfer method.

    The method for creating the flexible touch sensor was similar to the one for PCB, but instead of using a copper board, we used a copper foil tape and a polyamide tape as a substrate. I have chosen the polyamide tape because of its relatively low cost and its insulating and high temperature stability characteristics. I printed the pattern for the lines and columns separately in the heat toner transfer paper, (A) and then we fixed each pattern over the copper foil tape (B).

    The copper foil tape with the printed paper was then placed on the surface of a heat press printer machine (A), which could be substituted by a clothes iron. The advantage of using the machine is to control the pressure applied to the hot surface, the temperature and the time of the process. In our method, we used 180°C and 70 seconds, which was enough for transferring the pattern from the paper to the cop-per tape. As the width of our polyamide and copper tape width were smaller than the sensor dimensions, we needed to join the strips for creating the substrate and the full sensor pattern (B and C). The copper tape was then glued on the polyamide tape.

    The last step of making the flexible touch sensor was to etch the copper in a similar way that is done for the PCBs.  We dipped the copper and the substrate in a solution of ferric chloride, responsible for corroding and removing unwanted copper, leaving only the pattern of lines and columns of electrodes and its contacts. The two layers (lines and columns) were then cleaned, dried and glued one on the top of the other, creating the matrix pattern (A). The sensor was flexible enough so it could be placed around the wrist, meeting the initial requirement of designing a wearable touch interface ( B). 

View all 4 project logs

Enjoy this project?



Piotr Słupski wrote 11/05/2018 at 11:53 point

Hi Leonardo, Please contact me !

I've been developing technology like this for over a year right now - let's start an IndieGoGo campaign together. << here's my LI - feel free to get in touch as I'm right now acquiring funding to develop the tech further . A cooperation with your usecase would be extremely beneficial for us both.

Kind Regards, Piotr

  Are you sure? yes | no

Dr. Cockroach wrote 10/01/2018 at 09:57 point

Has great potential, I work in Assisted Living and am in contact with those afflicted with Dementia and Alzheimer and something like this could be a great benefit :-)

  Are you sure? yes | no

Similar Projects

Does this project spark your interest?

Become a member to follow this project and never miss any updates