2020 HDP Dream Team: CalEarth

The 2020 HDP Dream Teams are participating in a two month engineering sprint to address their nonprofit partner. Follow their journey here.

Similar projects worth following
The Challenge-

Automated Options for
SuperAdobe Building Processes:
One potential drawback to the SuperAdobe system is that it’s a very laborious method of construction. The intensity of labor accounts for the vast majority of building expenses.

This challenge asks teams to automate or mechanize parts of the building process in order to maximize efficiency, and drive labor costs down, without compromising the integrity of CalEarth’s vision to ensure accessibility and affordability of the technology.

The Team:

Sameera Chukkapalli
Architect & Director of NeedLab
Spain, Barcelona, Barcelona City.

Jason Knight
Product Designer
Eindhoven, Netherlands, Eindhoven

Alex Whittemore
Electronics Engineer
USA, California, Manhattan Beach


CalEarth's mission is to further the research, development, and education of Superadobe, a safe and accessible form of Earth Architecture that provides environmentally and financially sustainable living spaces. CalEarth is engaging in ground-breaking research and education that fundamentally transforms housing options worldwide.

  • Technical Concept Development Update

    alexwhittemore2 days ago 0 comments

    As a team, we're still in the early stages of figuring out all the pain points of SuperAdobe construction and making a formal assessment about where lies the best value for money in addressing those pain points. 

    Even still, we've already learned some extremely interesting details of the process we wouldn't have expected, and naturally, we've got some ideas of tools we might build to address them. 

    For instance - you'd think (or I would, anyway) that the most labor-intensive (specifically time-intensive) part of building a structure from sandbags full of earth would be actually shoveling earth into those bags. Surely, you've got a lot of bag volume to pack, and going back and forth over and over with a coffee can must take a lot of time? As it turns out, talking with Marco at CalEarth, we found out that the biggest bottleneck of the process usually seems to be the person whose job it is to map out where the next bag goes.

    Under the current process, this person uses chains and trigonometry to calculate how far the next bag layer is supposed to overlap the first one. But with a handful of people doing the easy and relatively rapid task of filling and laying bags, this one expert tasked with QC tends to get overwhelmed. In addition, it sounds like builds often end up wasting time on compass errors that require dismantling work to go back and re-do it. For example, if the chain gets twisted up and therefore shorter, the team may place even a layer or two of bags in the wrong position before realizing the error.

    Being an electrical engineer by trade (and one who's used LIDAR professionally quite a bit lately), the first thing that jumped to my mind was a laser scanning system. The proposed device would sit in the middle of the foundation area and measure range on a circle, sweeping out a vertical cross section of the structure under construction. Bags that have already been placed will show up on the scan line, and the range to these bags will either be correct or incorrect based on a profile loaded into the scanner. For feedback, the same scan head could also EMIT a laser, perhaps with a green line where bags are positioned at the correct range (give or take some error) and a red line where they're incorrectly placed. We call this idea the LIDAR Compass.

    As it turns out, CalEarth has already come up with their own lower-tech solution to this problem, and sometimes uses what they call a "sail." This is a big sheet of wood cut to same profile as the inside of the finished dome, which can be rotated around a mast on the center axis. 

    The problem they've run into with the "sail" concept is that actual structures often have protrusions through the walls while being constructed, such as forms for windows or vents that poke into the inner volume of the finished dome. These pose an obstacle for the mast, since it can't sweep through space occupied by a protrusion, and some designs mean that the sail can simply never rotate in a full circle. 

    A relatively basic low-tech improvement to the "sail" tool we call a pipe sail. Instead of attaching a full-size profile of the dome to a pivot we could put just a vertical pipe on the center axis, with pre-marked radius measurements for every bag layer going up it. For every layer, builders clamp a shorter pipe at a right-angle, using a tape measure to set the length per the radius marking under the clamp. This doesn't completely solve the obstruction issue, but with with a simple chalk marking on the radius pipe, it could be unclamped and re-clamped at will to pass any obstructions. 

    Of course, there's much work still to be done to validate these ideas!

  • Inhabitant interviews, Why it is important?

    Sameera Chukkapalli2 days ago 0 comments

    Inhabitant interviews, Why it is important? 

    It is important to understand the needs of inhabitants of CalEarth houses. 
    In order to understand the needs, we are conducting "user interviews" with the people who are living or have lived in CalEarth houses. The aim is to get to know their pain points - if there are any! and learn about improvements that they wish to have in the CalEarth houses. 

    • Draft questions for the inhabitant's interviews. (make the questions the 5 why questions to understand the deep need)
    • Find inhabitants to interview. 
    • Reach out to CalEarth community to find inhabitants.
    • Find individuals who took CalEarth workshops and reach out to them. (social media, LinkedIn, Find publication of self builds)
    • Interact with the inhabitants to ask for an interview. 
    • Document the interview and analyse it.
    • Make notes of the key takeaways from the interviews.
    • Have a meeting with the team about the key takeaways.
    • Plan an action plan for the key takeaways. 

  • Week 1

    Jason Knight3 days ago 0 comments

    Builders interview questions

    1. What are the most three challenging parts of the build process? (In order of most challenging to least challenging?)

         1.1 Describe, in a bit more detail, for each of these three challenges what makes them so challenging?

         1.2 Have you ever had any ideas about what could make them easier?

    2. What are the most three time consuming parts of the build process? (In order of most time consuming to least time consuming?)

         2.2 Describe for each of these three challenges what makes them challenging?

         2.3 Have you ever had any ideas about what could make them faster?

    3. What Skillsets do you practice?

    4. What tools do you commonly use, both within and outside of this project?

    5. What software do you commonly use, both within and outside of this project?

    6. What is the most limiting factor of the build:
         a. Human Strength
         b. Human Stamina
         c. Complexity (Physically)
         d. Complexity (Intellectually)
         e. Other

    7. Are there any other changes to the build process you have thought about making?

    8. What is the most useful innovation (technical/practical) you apply when building the domes?

  • Week 1

    Jason Knight4 days ago 0 comments

    We began this week by defining our milestones and writing a Gantt chart to make sure we keep on track with everything.


    Milestone 1Research Complete
    Milestone 2Conceptualisation Finalised
    Milestone 3First Prototype Complete
    Milestone 4CalEarth Testing/User Testing Collected
    Milestone 5Second/Final Prototype Complete
    Milestone 6Finish Compiling open source Package
    Gantt:We made the decision to swap the last two items on the list that suggested schedule to finish physical prototyping then compile all the documentation after as the final step.

  • Week 1

    Sameera Chukkapalli5 days ago 0 comments

    Week 1: 

    1. Deep dive into understanding Superadobe and construction workflow of CalEarth structures. 
    2. Extensive technical reading and outlining possible interventions. 
    3. Team meeting with CalEarth to understand their pain points.

    Target group - USA, Europe - Developed Areas 

    Increase the demand in the US in order to make it an appealing trend in other parts of the world. Leverage the appeal to increase sustainable construction. 

    The solutions should make the work better, faster, safer.

    1. User friendly (Easy to train to unskilled builders)
    2. Apply to Masses
    3. Accessible 

    Pain Points

    1. Develop less labor intensive - Low tech solutions. (Profiling campus/tool, Compactor) 
    2. IOT based quality enhancer solutions. (WIFI)

    Key takeaways

    • Profiling of the structure: this is a huge pain point. There is dependence on the person doing the “ compass profiling task”. The rest of the team members have to wait for this person to indicate where the next layer is placed and how much is the overlap. If we can find an alternate way to make the profiling of the domes easy that would save a lot of time and money (as workers are waiting for this task to happen). 
    • Make the build appealing and less labor intensive: Look into compacting tools that are automated but low tech.

View all 5 project logs

Enjoy this project?



Similar Projects

Does this project spark your interest?

Become a member to follow this project and never miss any updates