close-circle
Close
0%
0%

eForth for cheap STM8S gadgets

Turn cheap stuff from AliExpress into interactive development kits!

Similar projects worth following
close
TG9541/STM8EF is based on Dr. C.H. Ting's interactive eForth for the STM8S Discovery with Kernel, interpreter, and compiler in 5.5K Flash. In order to get the most out of the 8K Flash of a $0.,20 Value Line STM8S the interactive demo was shrunk to 3.6K.

Features were added: compile to Flash, Forth interrupt handlers, background task, vectored I/O, 7S-LED display drivers, analog and digital I/O, CREATE..DOES>, and a framework for configuration, feature selection, support of boards (e.g. the notorious W1209). C can be mixed with Forth, e.g. to use it as a shell for testing, parameter setting, or scripting.

Other HaD projects now use the STM8EF code. Check out the logs here, and the docs in the GitHub Wiki!

What is it good for?

The project delivers configurable board support code for selected targets, and docs. Besides its modest size, the TG9541/STM8EF code has a long feature list. Using the code for embedded control applications is subject to new projects.

The code on GitHub can be used in many ways:

  • for writing alternative firmware Chinese commodity boards (e.g. thermostats, DCDC converters, or relay boards)
  • for embedded systems with an interactive shell (scriptable and extensible)
  • for creating smart SPI, I2C, or RS232 smart sensors with a scripting shell, e.g. for RaspberryPi, Arduino, or ESP8266
  • as an interactive environment for exploring the STM8 architecture
  • for learning Forth. It's easy and fun - find out why in the text below!
  • ...

Why a Forth for Cheap Chinese boards?

Because it's fun: cheap mass-produced imperfection is a playground for creativity :-)

Right now, the W1209 is my favorite target: it's a rather complete embedded control board with a UI at a very good price. It's as cheap as it looks, and the challenge is in it's imperfections: the guy who designed the board clearly didn't have a connected application in mind, and I had a lot of fun making it do things it was never intended to do.

There are challenges, like the lack of communication ports. The "sensor connector" can either be used for communicating, or for sensing. What if you need sensing and communication at the same time? Maybe the "update connector" can be used as a home brew field bus interface? A lot is possible with the right idea, and the right software!

Which target boards are supported?

Besides generic CORE target for STM8S003F3P6, there is currently support for the following boards:

I also ordered the following SmartClima control boards for tests:

@Elliot Williams worked on using the ESP-14 as an IoT deviced (the ESP-14 is an ESP8266 with an STM8S003F3P6 in a ESP-12 package).

Programmable power supplies based on the XH-M188, and a cheap DC/DC converter are work in progress. There are also several types of STM8S003F3 based voltmeters that can be supported.

Read more about likely future targets below.

Why Forth?

Again, because it's fun!

Consider this:

  • compared to other programming environments the core of Forth is easy to fully understand
  • like Lisp, Forth has a REPL (Read-Evaluate-Print-Loop) which enables software testing in a way impossible with "Edit-Compile-Run-Debug" (e.g. Arduino)
  • it's easy to build Domain Specific Languages (you can literally program the compiler!)
  • the stack-centered "factoring" approach provides implicit data flow which leads to maintainable code
  • Interpreter-compiler, basic OS functions fit in just 4K code :-)

Forth starts out as a stack machine with a tiny instruction set and minimal hardware requirements. It fits in a few KiB, and the target, even a lowly µC, can even be used as the development system. The Forth stack machine is a minimalistic VM on a standard CPU, but there are also hardware implementations (e.g. for FPGAs, or a 144 core Forth processor). The VM is ideal for fast context switching and Forth easily meets hard-real-time requirements. It's no surprise that Forth was used in many NASA projects.

A Forth programmer is in control of all levels of problem abstraction, a unique advantage in a world where layer on layer of 2nd hand solutions leads to ever growing complexity (compilers, libraries, operating systems, drivers,frameworks, IDEs... ). I'm convinced that "Thinking Forth" will make anybody a better programmer, not just in the domain of embedded control!

Why STM8S003F3 or STM8S103F3?


Low-end "STM8S Value Line" STM8 µCs are very cheap (less than $0.25 in hobby...

Read more »

stm8ef_v2.2.0.zip

The latest release is on GitHub. Release v2.2.0

Zip Archive - 18.94 kB - 12/04/2016 at 23:22

download-circle
Download

2157_stm8ef.zip

Original version of STM8EFalong with docs as received from Dr. C.H. Ting on 21/Nov/2016. The docs are worth reading, the eForth binary will run on the STM8S Discovery.

Zip Archive - 21.97 kB - 11/21/2016 at 20:13

download-circle
Download

  • 1 × ST-Link V2 ICP adapter (e.g. $2.00 from AliExpress) The ST-Link on an STM8S Discovery Board can be used, too
  • 1 × serial interface /w 3.3V level (e.g. a $0.60 CH340 USB adapter) e.g a CH340 USB interface
  • 1 × STM8S target device as listed in the GitHub Wiki (e.g. a $0.70 "STM8S103F3P6 minimal system board") e.g. "STM8S103F3P6 STM8S development board" from your favorite China source
  • 1 × Some headers, patchwires, breadboard etc (about $2.00)

  • e4thcom features #require, \res MCU:, \res export, and build automation

    Thomas3 days ago 0 comments

    e4thcom not only supports include files but also Forth dictionary based requirements resolution. Consider the following code:

    #require CONSTANT
    #require MARKER
    #require ]B!
    MARKER RAM\
    \res MCU: STM8S103
    \res export PB_ODR
     NVM
      : LED.on ( -- )  [ 0 PB_ODR 5 ]B! ;
      : LED.off ( -- ) [ 1 PB_ODR 5 ]B! ;
     RAM
    RAM\
    \index  LED.off  LED.on

    #require uses ' to test whether a word is in the dictionary. If it's not there (the error message remains hidden in the background) it looks in the e4thcom source search path for a file with the same name, loads, and compiles it. If the compilation was successful, it checks if the required word is there, and if not it even defines a dummy word to satisfy future tests. Cascaded includes are supported up to a nesting level of 16, and simply including a required word, or a "vocabulary" works well.

    In the example above, the CONSTANT is already satisfied by the core (not loaded). MARKER, a feature for marking a part of the dictionary as temporary, and the static bit manipolation feature ( [ flag addr b# ]B! ), are loaded to RAM.

    The named marker RAM\ allows for freeing up dictionary RAM (the STM8S003F3 has a total of 1024 bytes, and not much more than 500 bytes can be used as temporary dictionary). With the help of MARKER that's plenty!

    The \res MCU: statement reads a resource definition file STM8S103.efr containing "<address> equ <symbol>" lines (and Forth comments). Definitions can then be exported one-by-one with the \res export statement to Forth CONSTANT definitions (CONSTANT compiles to LITERAL, so no additional runtime code is needed), and the words defined that way can be temporary.

    e4thcom proviedes the \index statement for inserting strings into the command completion index. Typing LED<tab> finds LED.on, and then toggles between LED.on and LED.off.

    The result of the above is two new words LED.on and LED.off with very compact machine code:

    cold
    stm8eForth v2.2
    last @ 10 dump
    92C6   7 4C 45 44 2E 6F 66 66 72 1A 50  5 81  0  0  0  _LED.offr_P_____ ok

    The dump shows that the code above translates to a dictionary entry (e.g. LED.off) and the following assembly instructions:

    LED.off:
            BSET    0x5005,#5
            RET

    Most of the above was made possible by the work, and active help with integration into STM8 eForth, from Manfred Mahlow, Forther, and author of e4thcom! According to him, the flexible usage of RAM as a unique feature of this tiny Forth solution. The combination the ALIAS feature has the potential to get even more out of 20ct µCs without sacrificing interactive development ( @RigTig ).

    However, all of the above now also works using the codeloadTCP.py, part of the uCsim based build automation framework of STM8 eForth!

    The combination of a convenient interactive µC programming environment (e4thcom) with Continuous Integration (codeloadTCP.py, uCsim, Docker, Travis-CI) is a new approach.

    One of the things I'm now is on how to bring lightweight dependency management to more STM8EF (I'm looking into NPM's package.json, supported by GitHub).

  • CONSTANT, MARKER, ]b!, headerless code, and a Docker CI improvement

    Thomas10/07/2017 at 20:20 0 comments

    The Mr. Mahlow, author of e4thcom and a well known name in the German Forth scene, proposed some improvements to STM8EF:

    • CONSTANT with interpret/compile aware operation
    • Improved ALIAS, and NVM: ... ;RAM for headerless code
    • [ f a b ]b! bit set/reset code generator
    • a starting point for defining STM8 bit/address symbols with the e4thcom \res feature

    The \res feature is great, but I also need to make it work in codeloadTCP.py. That shouldn't be too difficult, even for a Python newbie like me.

    On the CI side I started using the DockerHub Automated Build feature for creating the tg9541/docker-sdcc Docker image. After I realized that build automation only works for new Docker repositories it was easy. Before that it was glorious frustration.

    On the bright side, all that's needed now for STM8 eForth hacking is a web browser. Yes, it will even work on a Windows PC ;-)

  • Test Automation for STM8 eForth: "Done"

    Thomas10/02/2017 at 17:47 0 comments

    Test automation for STM8 eForth is ready!

    It works like this:

    • a terminal sends test instructions in the form T{ code-under-test -> expected-result }T
    • character output is tested like this T{e code-under-test e-> char-count char-sum%16 }T
    • testing COLD cycles and data persistence works by setting a start-up word

    Travis-CI runs the test for every commit, or pull request

    Here is a demo of the same test run manually in e4thcom:

  • Automated STM8 eForth Testing with Travis-CI and µCsim in Docker

    Thomas10/01/2017 at 11:13 2 comments

    For OpenSource projects Travis-CI provides test automation for free (free as in free beer)!

    We're not talking about a reduced "entry level service": it's professional grade, fast, powerful, and very well integrated into GitHub! It can be combined with yet another service that's free to use for OpenSource projects: DockerHub.

    Check out the following pull request where you can see an OpenSource DevOps workflow in action:

    Next up: unit- and integration tests for the STM8 eForth core, smoke tests for the release binaries, and finally automatic deployment (e.g. to GitHub Releases).

  • v2.2.17.pre: Bug fixed. CI with Test Automation on Track

    Thomas09/30/2017 at 12:06 0 comments

    The bug in $" (compile in-line string) found by @Eelco is now fixed, but there is still no revision information in "HI" (this will be part of the final release).

    However, there is some important progress in the QA department: automated quality assurance, using SiL and virtual hardware, is on track!

    The following now works:

    • there is a Docker image with the build- and simulation tools (see Dockerfile)
    • Travis-CI uses Docker to run builds and tests using tg9541/docker-sdcc
    • An automated "smoke test" works (compile Forth code with the W1209 binary)

    I'm quite happy with the progress but there still is a lot left to do:

    • write proper unit tests
    • compare string output
    • run smoke tests on all of the board specific binaries

    Unless uCsim gets a much better hardware emulation, the following tests currently require a "HiL setup":

    • test the "software UART" code (it had to be "bypassed" in the current SiL)
    • interrupt code
    • background tasks
    • 7-S LED and key drivers

    I guess that such a HiL setup, maybe Raspberry Pi based, can be used from within Travis-CI.

  • Good testing is important - regressions can be sneaky

    Thomas09/24/2017 at 09:04 0 comments

    This addresses issue #69 which affects the releases v2.2.13, v2.2.14, and v2.2.15.

    The bug is rather sneaky: under certain conditions compiling to Flash (e.g. the sequence NVM : test ; RAM, COLD) worked only once after flashing the binary. It's not clear why it always worked when I tested it, but this incident certainly calls for better QA. Sorry about it!

    The release also includes a "runs-on-my-machine" fix for #72 "Containerize the SDCC and uCsim toolchain, prepare improved test automation" to prepare automated release testing using continuous integration ( @Lars Brinkhoff : thanks again!).

    Edit: the Docker image is here https://hub.docker.com/r/tg9541/docker-sdcc/

  • Community, Contribution Guidelines, and Rules

    Thomas09/23/2017 at 10:11 0 comments

    According to The Krihelinator STM8EF fares reasonably well (for being a Forth / Assembly project):

    The STM8 eForth hobby project is slowly turning into a community project!

    @Lars Brinkhoff recently proposed adding contribution guidelines to the TG9541/STM8EF repository. I made a draft, and I'd like to ask you for comments!

    Lars also recently contributed the foundations for continuous integration, i.e.  basic automation of quality assurance:

    Travis-CI is great. Thanks Lars!

    Maybe the most interesting aspect is that any successful software community project must find the balance between "happy hacking", and some form of shared responsibility and quality assurance. It might even need a board, bylaws, and conflict resolution, but then either something went  extremely wrong, or miraculously well ;-)

    On the personal level, I also need to commit to respecting the rules of the community I (and others) try to foster.

  • e4thcom-0.6.2 with STM8EF support released

    Thomas09/22/2017 at 16:23 0 comments

    The new e4thcom-0.6.2 release supports STM8EF directly!

    Thanks to the active support from the author of e4thcom there is no noticeable difference between 2-wire (half-duplex) and 3-wire (full duplex) interfaces (handshake, mirrored <CR> character ignored, <EOL> marker in compile mode, error detection with <BEL>). Forth compilation to Flash is now rather fast.

    e4thcom works on Linux on X86 and Raspberry Pi. The embedded Forth systems currently supported by e4thcom are 430CamelForth, 430eForth, 4e4th, AmForth, anyForth, Mecrisp, Mecrisp-Stellaris, and noForth.

  • Meeting People: A Subreddit Thread, and a GitHub Front Page Remake

    Thomas09/17/2017 at 17:51 0 comments

    For hobby projects like mine, communities like HaD, GitHub groups, or a subreddit are awesome: one gets traffic, and traffic is only way to reach some of the coders who are lateral thinkers. That's a rare species since coding training follows a strict vertical approach.

    In some industries, like the one I work in, new approaches are very much needed: vertical thinking, e.g. scaling-out today's solutions, won't cut it. Lateral thinking coders are more likely to be looking at alternatives, and who knows, maybe one of them might be the architect who applies an alternative Moore's law.

    In any case, I believe that the Forth community has always had some of the best lateral thinking minds. Learn to know them, listen to them, they'll be needed.

  • STM8EF v2.2.15: e4thcom, STM8S001J3, and faster NVM compilation

    Thomas09/17/2017 at 11:55 0 comments

    e4thcom Support

    e4thcom is a nifty terminal for embedded Forth systems that supports #include and basic dependency management with #require. The author contributed support for STM8EF that works with 2-wire (half-duplex), and 3-wire (full-duplex) serial interfaces. Thanks a lot!

    FILE ... HAND is now disabled by default because the method used in e4thcom works better (e.g. a decent error indication with the BEL character, and indication of compile mode with OK like in noForth).

    STM8S001J3M3 Support

    STM8EF now supports the latest member of the STM8S low-density family: the STM8S001J3M3 in a hobby-friendly SO8N package.

    The default configuration uses the STM8S UART1 in half-duplex mode (see issue #57 ) for the console. Connecting a PC-UART works as described in 2-wire communication. Depending on your UART you may need a 10k pull-up resistor. Note that the risk that PD1/SWIM gets blocked is significantly reduced by using pin8 for the console. Alternative use of the pin for reading an analog sensor might work, too.

    Faster Compilation in NVM Mode

    Let's just say it's faster now (much faster, indeed), and let's forget that it should have been like that from the start ;-)

    Forget Release v2.2.14

    The binary release was OK, but due to a merge hick-up the source code in master was rubbish. Thanks to @timsoer for reporting issue #59 !

View all 93 project logs

  • 1
    Step 1

    Get some cheap hardware (e.g. a STM8S103F3P6 breakout board for $0.65 and a ST-Link V2 dongle for $2). download the binary release, flash it, and have fun!

    If you like it, and you want to hack board support code for your favorite STM8China gadget, you need:

  • 2
    Step 2

    a Linux SDCC tool chain installation (installation instructions for SDCC & stm8flash are in the Wiki)

  • 3
    Step 3

    Clone the project on GitHub

View all 4 instructions

Enjoy this project?

Share

Discussions

Roy wrote 10/06/2017 at 09:31 point

Microchip produced a humorous self-critical video about the failings of the PICkit 3 vs the older 2. Perhaps ST Micro should be shamed to do the same with their products. I realise that this is off topic but still a good example of how not to do things and take ownership for getting it wrong. My ST Visual Programmer is 3.4.0 Jul 12 2017.

  Are you sure? yes | no

Roy wrote 10/04/2017 at 17:23 point

Having lived in Quebec a long time ago, there is a local swear word that sounds like ST. This is what I say every time I use ST software and hardware. STVP does not even show the latest factory ST-LINK/V2 as an option - 'ST-LINK All Versions' would be useful. The thing never connected as I tried a few times a year over many years. They do nothing to alert you that the target device needs external power. I always had clones that did the job so there was no great urgency to learn it.

Many (all?) of the cheaper USB - STM programming adaptors had figured this out a very long time ago. Even Microchip PICkit 2/3 monitors power on the target but gives the option to power their external devices.

Simply logging in to ST to get free software goes into an email / validation death spiral loop that is a complete waste of our valuable time. If the people of ST responsible for this nonsense worked for me, then they would be all unemployed.  

...ST

  Are you sure? yes | no

Eelco wrote 09/30/2017 at 16:11 point

Hi Thomas

I saw you solved the issue. Great! Thanks.

  Are you sure? yes | no

Eelco wrote 09/27/2017 at 18:13 point

Hi Thomas, I am enjoying your project for more then a year now. Today I joined hackaday to be able to participate. I bought a couple of W1209 and mindev boards to play with. I also have an ssd1306 i2c oled display (about $3 at Aliexpress). I managed to drive it using the i2c capabilities of the chip, no bit-banging. This was a few months ago, with version stm8ef-bin.2.2.8 and a MINDEV board. I used $" to compile the text to be send to the display (e.g. : txt $" text" ;) I upgraded to more recent versions, up to 2.2.16, but executing a word that contains $" freezes (or reinitilizes, as with COLD) the board. What am I doing wrong here? Do I have to raise a flag in globconf.inc? Can you point me in the right direction?

Btw, I'm happy to share the code if anyone is interested.

  Are you sure? yes | no

Thomas wrote 09/28/2017 at 06:07 point

Hoi Eelco,

thanks for letting us know about your work! Your contribution in the I2C field would be very much appreciated!

Also thanks for reporting the issue with $": this is a regression. It's tracked here https://github.com/TG9541/stm8ef/issues/75, and I'll fix it as soon as possible.

The root cause is insufficient testing. Some of the progress for building a test infrastructure is tracked here: https://github.com/TG9541/stm8ef/issues/76

I would love to have you in the team at GitHub. I'm quite sure that the other team members would say the same.

Met friendelijke groeten,
Thomas

  Are you sure? yes | no

Eelco wrote 09/28/2017 at 08:43 point

Hallo Thomas

Thank you for your kind reply and invitation, I would like to join. I have to warn you though that I have little coding experience but I am learning thanks to projects like yours. How do I proceed to upload the code?

I just saw you have a separate project with W1209 thermostat boards. I use two of such devices in my household: one as a replacement thermostat in a refrigarator. The other one in the boiler of the central heating unit. Maybe I can make small contributions on that project too.

mit freundlichen Grüßen

Eelco

  Are you sure? yes | no

Thomas wrote 09/30/2017 at 12:20 point

Hi Eelco,

the only way to gain coding experience is coding. There is still a lot you can do, e.g. write tests (which improves coding skills significantly!), or write library code (e.g. I2C), or do a review (also a great way to learn), or spread the word... Please let us know your GitHub ID, and you'll receive an invite!

A warning about W1209 in safety critical applications:
* only use hobby stuff for adding features that aren't safety critical
* always rely on built-in safety features of the product
* make sure to get a review of your design from someone who knows safety

Creating a HaD-project is a great way to get feedback from experts!

  Are you sure? yes | no

richard wrote 10/05/2017 at 03:08 point

Hi Eelco,

I would welcome seeing your code. I'm likely to use i2c one day and your code will give me a head start.

Regards

Richard

  Are you sure? yes | no

Eelco wrote 10/05/2017 at 08:47 point

Hi Richard

Here is the link: https://github.com/Eelkhoorn/forth-oled-display

Please let me know if  you have recommendations for improvement.

Regards

Eelco

  Are you sure? yes | no

richard wrote 10/05/2017 at 15:04 point

Hi Eelco,

thanks for the code below. Already I have learned about the B! word from reviewing your code. That's going to help me enormously with my W1209 project where I want to turn an input port into an output port for some of the time.

You've done a much better job than I would have. Thanks again

Richard

  Are you sure? yes | no

Eelco wrote 10/05/2017 at 21:59 point

Hi Richard

You're welcome, I am glad it is of use to you. I uploaded another file on my github account with io-manipulating words: io.fs. These words use a numbering of the gpio-portpins. The word io. displays the state of the IDR,ODR,DDR,CR1 and CR2 for a portpin. (e.g. $15 io.  displays these bit states for the  second port (Port B), pin 5. Maybe useful for you as well.

  Are you sure? yes | no

Peter wrote 08/21/2017 at 14:11 point

I'm a newbie and have implemented eForth on a STM8S103F3. While I have successfully implemented the "mystart" boot example which remains in NVM  following a power reset, I just can't seem to get any other created word to be available. Could I have some guidance please? 

  Are you sure? yes | no

Thomas wrote 09/24/2017 at 07:24 point

Hi @Peter, sorry, I noticed your message just now, which is very unfortunate. Yesterday I independently found the problem you were facing. The problem, which existed since 5/August/2017, has been fixed. A new binary release is being prepared.

  Are you sure? yes | no

Thomas wrote 09/24/2017 at 08:38 point

I just released v2.2.16 to fix this issue.

  Are you sure? yes | no

Peter wrote 09/25/2017 at 20:56 point

Hi Thomas. On my second MinDev I was able to re-programme it using STVP ID 3.4.0. However as it says "stm8eForth v2.2" which is identical to other boards, how do I distinguish it elegantly via communication? Incidentally the first board which has been running a blink programme as an endless loop on "problem 2.2.13" refuses to re-programme via SWIM reporting not blank though ROP is off. Any suggestions on recovering it?

  Are you sure? yes | no

Thomas wrote 09/29/2017 at 18:06 point

Hi Peter,
you have a point there.  @barewires already filed an issue. I'll be looking into it!
https://github.com/TG9541/stm8ef/issues/68

  Are you sure? yes | no

Peter wrote 5 days ago point

Hi Thomas, small update to follow. I don't know whether it's my ignorance but I was expecting to be able to reply as another indent to your reply 09/29/2017 at 18:06 but replying via 09/24/2017 at 07:24.

  Are you sure? yes | no

Peter wrote 5 days ago point

To cover my experience described earlier I'll split it into two responses in case anybody wants to work on that part of it. I have not been doing any compiling but just running STVP in windows burning IHX files as required. Any compiling I'm likely to do will be in Windows as I've found setting up a Linux similar to what I use a challenge (...ST). Zorin I'd suggest is a better start that many.

I solved how to re-programme a stubborn STM8S103F3P6 mentioned by specifically selecting the Option Byte window tab and then using Program > Current Tab.  Then I was able to program as I normally do so by using Program > All tabs.  Possibly a glitch but nothing else worked.

  Are you sure? yes | no

Peter wrote 5 days ago point

To distinguish between the different versions of 2.2.xx appearing as v2.2 I've started to modify the IHX file so that the same 4 bytes now display 2v17 for example. I'll explain the procedure for newbies like me used to Windows.

1. Copy the IHX file and rename including the version and change the file type to HEX. e.g. C0135.IHX becomes C0135-2v17.HEX.

2. Open the file using STVP and choose the Program Memory tab to display both the hexadecimal and ascii contents.

3. Go to around line 000081E0 and you should see in the ascii columns on the right  stm8 eForth v2.2. Put the cusor on the v and update. The hexadecimal will change.

4. Save

Now on STVP default settings the files are easily accessible. For me the approach above is easier than directly locating the file with STVP and using the Save As to create the HEX copy. 

  Are you sure? yes | no

Thomas wrote 5 days ago point

Hi Peter, thanks for updating on the Windows tools!

I'm currently working on `codeloadTCP.py` - it should mirror the properties of e4thcom (require, \ res, \\ Example). Maybe the same is achievable on Windows with `loadserial.py`.

  Are you sure? yes | no

jeff1937 wrote 07/29/2017 at 07:38 point

Just wondering does anyone know if it could it be possible to read the temperature of a W1209 via wire serial communication ?

In other words I just want to log the temperature to a computer, but still leave the W1209 to function as a thermostat.

  Are you sure? yes | no

Thomas wrote 08/05/2017 at 13:08 point

Yes, that's possible. The steps are as follows:

1. determine the R_ntc to voltage function (e.g. using a trimmer and an unmodified W1209, 5 values, e.g. 0 deg C, 80 deg C, and 3 values around (and including) the temperature you care most about)

2. flash W1209-FD from the v2.2.13 release

3. determine the ADC6 values for relevant R_ntc from 1.

4. create an interpolation function from 3.

5. write a simple background task that does thermostat control by reading ADC6 and using 4.

6. read the temperature value from 5. using console commands from your computer. Alternatively send the values in the background task

If you describe your use case more precisely, I can write something to get you started


  Are you sure? yes | no

jeff1937 wrote 08/06/2017 at 00:47 point

Thanks Thomas for the helpful reply.

My applications are to turn off a immersion heating element in a cooking pot when the water reaches near to boiling and secondly to operate a fan in a solar dryer at a temperature around 100C, with computer logging every 10 minutes or so.

Thanks for your kind offer of assistance, but I will try to get some unmodified W1209s operating in a circuit, just to get started first.

If I was able to reflash them, I would hope to retain the 3 digit temperature display.  Which sounds easy as you say they are fully supported by STM8EF vectored I/O.

I guess the key pins don't operate when they are used for serial connection, which is OK because the temperature points could be hard coded in software.

  Are you sure? yes | no

Thomas wrote 08/06/2017 at 05:07 point

Jeff1937, thanks for the info! How do you think about making a small project out of this? I've got a feeling that quite some people would be interested in using this :-)

Know what, I've got a couple of spare W1209 boards here. I'll start a new project, and invite you as a team member. Does this sound good?

  Are you sure? yes | no

jeff1937 wrote 08/06/2017 at 06:54 point

Also was thinking that you could use a datasheet for an NTC 10K.

http://eecs.oregonstate.edu/education/docs/datasheets/10kThermistor.pdf

It shows a resistance table between -55 to 125°C.

eg 25°C = 10,000Ω, 80°C = 1,068Ω,  100°C = 549Ω

Then calculate the theoretical voltage at PD6 with a 20k pull-up to 5V.

This would need a later calibration correction adjustment, but should give a good starting point.

  Are you sure? yes | no

jeff1937 wrote 08/06/2017 at 06:59 point

Yes I would like to have a go at making this a project, or helping.

My W1209 boards haven't arrived yet, but there's plenty to learn in the meantime.

  Are you sure? yes | no

Thomas wrote 08/06/2017 at 07:02 point

Good idea, at least to validate the temperature readings we get.

By the way, I started a HaD project for this. Let's continue with our discussion there!

https://hackaday.io/project/26258-w1209-data-logging-thermostat

  Are you sure? yes | no

Thomas wrote 08/06/2017 at 07:16 point

Ok, great! Get's let started. Please visit the project page, and "Follow" the project to get a notification when there is something new.

There is a first project log, where you can add comments. I also added a GitHub project for code and docs.

See you there!

  Are you sure? yes | no

jeff1937 wrote 08/06/2017 at 08:02 point

OK, will follow you there, thanks Thomas

  Are you sure? yes | no

richard wrote 07/22/2017 at 02:02 point

My first attempt at using a W1209 board has been very rewarding. A couple of suggestions for anyone starting out and for the project team:

 

1. I had no success flashing the board with the suggested ST software on http://www.st.com/en/development-tools/st-link-v2.html.  You may also consider the ST software used by the person who published the schematic of the W1209. It can be found at http://www.st.com/en/development-tools/stvp-stm32.html

 

2. When putting the header on for the SWIM connector use 5 pins instead of 4. The 5th pin is a convenient place to tie one end of the diode to for the half duplex link.

 

3. While the SWIMCOM binary may work on the W1209 board, for the newcomer there is a lot of reward in seeing the "4th" string on the LED display once the binary is flashed. With that feedback you know it is just a matter of getting the serial comms to work.

 

4. With the extra pin the SWIM connection would be a much better place to have half duplex communications. It would prevent the serial communication from disrupting measurements on the sensor pin while debugging and gives you a pin that your push on connector holds better.

 

5. Is there a place to share code snippets? For instance, I wanted to blank the display before sending another character to it. I used

 : Clrdisplay \ clear anything showing

        32 E7S 32 E7S 32 E7S ;

 

I also wanted a delay between displaying “On” and “Off”. I used the following but I suspect there is an easier way:

VARIABLE timer

variable bigtimer

 

: tSet TIM 1000 + timer ! ;

: tTest TIM timer @ - 0 < ;

: delayInner tSet begin ttest until ;

: delay 0 bigtimer ! begin delayInner 1 bigtimer +! 25000 bigtimer @ - 0 < until ;

 

If there was a way to share these snippets it may prove useful to the newcomer. Maybe I just don’t understand the features of github well enough *grin*.

 

Anyway, I can recommend this forth implementation to anyone looking to hack one of these boards. I’m having a blast . I only wish I had found about this project before I built my electric gate controller with an atmel avr chip programmed in assembly. I could have just brought a cheap relay board and achieved the same thing without having to fabricate a board, populate it then program it in assembly.

 

Keep up the great work team.

 

Kind regards

Richard

  Are you sure? yes | no

Thomas wrote 07/22/2017 at 08:49 point

Hello Richard, thanks for your comment, it's higly appreciated!
Here are a few pointers to related actions, some new, some in the making.

1: the Wiki is updated https://github.com/TG9541/stm8ef/wiki/STM8S-Programming

2, 3, 4: using a 5-pin header and a diode is a good idea! I'm currently experimenting with using the W1209 key GPIOs (PC4, PC5) for full-duplex communication, which has several advantages. What do you think?

The usability of STM8EF programming is currently under active development.   Especially a. and b. should be helpful for new users:

  a. improved full-duplex serial code, e.g. for W1209 https://github.com/TG9541/stm8ef/issues/41
  b. e4thcom support with libraries
  c. temporay "scaffolding" code in RAM
  d. board hex file generation in uCsim

5: I created a GitHub Gist with your code snippets - let's see if that works as advertised: https://gist.github.com/TG9541/69fa106e88f8ca3a482a79e572c45463 

I created an issue on GitHub https://github.com/TG9541/stm8ef/issues/42
It would be great if you could contribute to  taking the decisions for a better W1209 support. Also feel free to open an issue on GitHub for topic oriented discussion.

Thanks again for your contribution.

  Are you sure? yes | no

richard wrote 07/22/2017 at 10:04 point

Thomas,

great stuff. I've been at it all day so real life drags me away for now. I don't have much to contribute on full or half duplex serial. I used Teraterm and slowed it down (25ms each character, 500ms for each line return) so the compiling could keep up. I was happy with that.

The Github Gist is interesting. Over time it could be really useful. Perhaps the main Github wiki needs to alert readers to it's existence?

I'm happy to help out with the W1209 where I can. You've no doubt heard of the saying "the blind leading the blind". 

The W1209 is a great platform and it is very exciting to think that much of what I used F-PC for years ago I could do on something costing so little. I plan to contribute as much as I can. 

Regards

Richard

  Are you sure? yes | no

Thomas wrote 07/22/2017 at 12:59 point

Richard,

the voice of users is important, especially in a hobby project where there is no such thing as "market research" - users know very well what makes a product  useful for them. One I'd like to figure out is if connecting a serial interface to the keys "+" and "-" is acceptable (the keys will remain usable), at last during interactive programming. The other thing is whether support for "sensor header COM" needs to be maintained, or if I can simply replace it with something better :-)

  Are you sure? yes | no

Thomas wrote 07/22/2017 at 17:06 point

FYI: issue #41 is closed (which means that full duplex communication now works without character delays). I'll make a pre-release.

EDIT: please check the project log

  Are you sure? yes | no

RigTig wrote 02/27/2017 at 21:59 point

Thomas mentioned that a better file loader would be nice. Here is my attempt. Simple to start with, but obviously capable of being expanded with features later. It is in Python2 and runs from the command line of the host machine (mine is LinuxMint).

<code>

#!/usr/bin/env python2

import serial
import sys
import time

port = serial.Serial(
    port='/dev/ttyACM0',
    baudrate=9600,
    parity=serial.PARITY_NONE,
    stopbits=serial.STOPBITS_ONE,    
    bytesize=serial.EIGHTBITS,
    timeout=5)

if len(sys.argv) < 2:
    print('Usage %s ... [fileN]' % (sys.argv[0]))
    sys.exit()

def upload(path):
    with open(path) as source:
        for line in source.readlines():
            time.sleep(0.2)        
            line = line.strip()
            if not line: continue
            if len(line) > 64:
                raise 'Line is too long: %s' % (line)
            print('\n\rsending: ' + line)
            port.write(line)        
            port.write('\n\r')
            chin = ''
            response_buffer = []
            while chin <> '\v':
                response_buffer.append(chin)
                while port.inWaiting() > 0:
                    chin = port.read(1)
            response = ''.join(response_buffer)
            sys.stdout.write(response)

for path in sys.argv[1:]:
    print('Uploading %s' % path)
    upload(path)

</code>

Usage: Save this code as a file (say named loadserial.py) and change its permissions to be executable (just the lines in between the code tags). I put loadserial.py in my local /bin folder. Edit loadserial.py so the port matches what you use when using a terminal console to connect to STM8 machine.

WARNING: I've just noticed that the indentation was inconsistently displayed, and python is indentation sensitive. So be very careful with just copy-and-paste. I'll put a copy of it up on RigTig's Big 3d Printer project here on hackaday.io.

Either put FILE on first line of the file to be sent, or type it into a terminal console and close it, then use a local command line interface thus: <code>  filename file2send </code>. Enjoy!

  Are you sure? yes | no

Thomas wrote 02/27/2017 at 22:26 point

Hi RigTig, this is cool! Now the last reason not to learn Python (the haploid language, as I use to say) has gone. I'm going to need it in my job, anyway ;-)

PS: I just added the tag v2.2.8.1.snapshot, and this means that the binary size of CORE is below 4096 bytes, complete with the new "transparent" VARIABLE feature

  Are you sure? yes | no

Thomas wrote 03/04/2017 at 11:07 point

I just tried your loadserial.py script - the handshake seems to work, and compiling code to NVM is very fast compared to the "worst case delay" method!

However, I had to interrupt the script with ctrl-c after the transfer was finished. The reason was that my Forth code ended with "HAND", after which loadserial.py waited in vain for the handshake signal.

I can imagine that an improved uploader does the following:

* handle FILE and HAND (no need to include those in source file), or

* terminate transfer when the response is anything but the handshake character

The next thing on a programmer's wish list is a way for including source files (nested, of course). I can also imagine testing if "base code" has already been transferred, e.g. using some query-response between the Forth system and the uploader.

  Are you sure? yes | no

Thomas wrote 02/27/2017 at 22:26 point

Hi RigTig, this is cool! Now the last reason not to learn Python (the haploid language, as I use to say) has gone. I'm going to need it in my job, anyway ;-)

PS: I just added the tag v2.2.8.1.snapshot, and this means that the binary size of CORE is below 4096 bytes, complete with the new "transparent" VARIABLE feature

  Are you sure? yes | no

RigTig wrote 02/23/2017 at 05:44 point

Thanks Thomas for a great environment in which to have lots of fun. I needed VARIABLE to be defined in NVM, but to keep its data in RAM. Some variables need to change for every data line processed (megabytes of GCODE), so using NVM is just not going to cut it for real use. Besides NVM access is slow. So, here is my replacement definition for my project:

: variable create here , 2 $6e +! does> @ ;

Now, this works only in NVM mode, because it makes no sense to use it in RAM mode anyway. Besides the DOES> part would be wiped every COLD or restart. The magic address of $006E is the address of next available RAM when in NVM mode.

If you want to test after a restart or COLD, you need to adjust the address of next available RAM to be after the last used address by a variable. In my case, the last used address was $009e. Note that in RAM  mode, the address of next available RAM is at $006A. So, I typed

$a0 $6a !

and then initialised all variables and they just work. Now this hack is not for every project (obviously), but does show what can be done when a need arises. Enjoy!

  Are you sure? yes | no

Thomas wrote 02/23/2017 at 21:35 point

Hi RigTig! That's indeed a nice hack, and it is much along the lines of what I had planned.

I'd like to propose the following solution: 

1. some memory below the user dictionary in RAM shall be set aside by adjusting the reset value of USRCP
2. the next variable address for NVM routines shall be stored in the (new) variable USRVAR, which shall be initialized from USRCP
3. when switching from NVM to RAM the reset value of USRCP shall be set to the value of USRVAR

I'd like to check if it's possible to make VARIABLE work transparently in NVM and RAM mode. Most likely writing a different word is easier.

  Are you sure? yes | no

RigTig wrote 02/24/2017 at 04:09 point

Thanks for compliment. I haven't really tried to make VARIABLE work in both RAM and NVM, but I am sure it'd work. The key is just understanding that there is one level of indirection (address of value instead of value), so RAM variables use an extra 2 bytes over the non-indirect version. Nice to avoid wasting ram, but not really a show-stopper. Coding in assembler should be far more memory efficient than the Forth version, but it's the joy of Forth to be able to do these kinds of things at all (and optimise later when you find that it is really a good idea!).

A hard reset or even COLD needs to preserve the ram space needed by variables, but I prefer not to lock in a pre-determined limit on the number of variables. I also hate wasting valuable resources by committing them for just-in-case scenarios. 

So let's consider the use cases. Is there a need to support programming to NVM, then RAM, and back to NVM? If we say that all NVM variables need to be defined before RAM gets any code, is that reasonable? At least all the ram needed is in one block in this case. Probably a bit hard to communicate to programmers, and practically impossible to enforce.

Even if there is some code compiled into ram before or after NVM variables are created, the only thing needed is to set the ram space used for parsing commands to be above the last used ram for any variable. This happens anyway until COLD or hard reset. Maybe all that is needed is a persistent vector stored in NVM to be used instead of the $0080 for start of ram space for code and variables. Now the incentive is for the programmer not to waste space, so it becomes 'obvious' that defining all NVM variables before using ram for anything else is just better management of the limited ram. VARIABLE needs to update the persistent vector each time, based on current ram pointer. Variables defined in ram waste space after a COLD, but that might just be a price to pay (and is quite ok during interactive development, methinks). Mmm... and RESET needs to reset the vector to first available ram for code and variables back to its compilation default ($0080).

I am sure to have missed something in this ramble, but hey, that's what hacking is about isn't it? If I knew what I was doing, then it is not real hacking! And what other language allows you to play around with how the language itself works, so Go Forth.

  Are you sure? yes | no

Thomas wrote 02/24/2017 at 06:41 point

RigTig, we're on the same page :-) 

If you read me previous comment carefully you'll find that the "machine" needed for implementing is mainly coded in the difference between "the reset value of USRCP" and "USRCP" (there is one error though: point 2. should be "in the new variable USRVAR which shall be initialized from the reset value of USRCP"). 

One could argue that this means waste of RAM, but actually it's just a buffer for certain use cases. You already mentioned some uses cases, and how much they would "surprise Joe Programmer".

My model for the programming workflow is this:

1. start a session with COLD, reset, or flashing the µC

2. write some test code in RAM (i.e. do the things you'd normally do with the original STM8EF)

3. run COLD and set the stage (e.g. define helper words like here: https://github.com/TG9541/stm8ef/wiki/STM8S-eForth-Programming#low-level-interrupts-in-forth)
4. run NVM, define words, variables etc as you like

5. run RAM, make pointers to the newly defined words, and also to USRVAR persistent

6. return to 4. (write more persistent code) or to 2. (test your code, preferably automated)

Of course, the casual user may miss the finer parts of the "Stage/NVM/RAM/Test/COLD" cycle, but they will notice quickly that words defined in RAM can't be compiled-in (only interpreted) in NVM, and that code compiled in NVM is lost if they forget to run RAM.

As you pointed out, a certain coding style, like defining variables first, isn't difficult to get used to. Setting aside a small buffer (e.g. 32 bytes) as a variable space wouldn't be a big deal, and it would enable the "setting the stage" use case without the risk of immediately overwriting words like IVEC. It's of course also possible to cycle through the steps 2..6 more often (also as a part of the source code) , but a buffer would add some flexibility. In the extreme case (use many variables, use a huge stack), writing test code in RAM would suffer. But hey, when testing words one tests the units, not the whole program where the stack reaches its maximum size.

  Are you sure? yes | no

Thomas wrote 02/26/2017 at 09:35 point

@RigTig

Please have a look at this: https://github.com/TG9541/stm8ef/tree/variable

The new code has the features discussed above. The behavior of VARIABLE and ALLOT is transparent in NVM mode, and in most cases there is no need to manage RAM allocation. Only if one allocates more than 32 byte RAM in a session it's necessary to cycle through COLD before using variables newly defined in NVM mode.

Edit: preliminary documentation of the new feature is here: https://github.com/TG9541/stm8ef/issues/16#issuecomment-282547170

  Are you sure? yes | no

RigTig wrote 02/27/2017 at 01:08 point

Thomas, I have to say that your approach is just brilliant. I love the idea of being able to just get more variable space if needed, and not wasting any ram either. 

P.S. We might be both on the same page, but I'm only partway down. I am still getting my head around the STM8EF code. I keep going back and changing the options for a new flash image and it is installed in a second or two. What fun to play with!

  Are you sure? yes | no

Thomas wrote 02/27/2017 at 07:17 point

@RigTig: thanks for your support! I just pushed a "size reduced" revision to the variable branch. Since I had to do some shuffling, some "review" and "testing" by "an independent person" would be great (in a hobby project that's what's known as "playing with the code" :-)

Currently some RAM gets wasted, but that could be bettered by giving the programmer control over the headroom for RAM allocation (which would be easy).

By the way, I ordered two of the radio modules you've been working on.

  Are you sure? yes | no

Elliot Williams wrote 01/23/2017 at 08:55 point

Hiya Thomas,

Got an ESP-14-powered device up and running and installed in our basement.  Long story, must write up.

Have you played around with power saving modes on the STM8?  I'm trying to get the part into the AWU / active-halt mode.  

For one, I need the assembler's HALT command, which I've been doing in the worst brute-force means possible: HERE $8e81 , EXECUTE.  (That's HALT and RET in machine code.)  

It halts, at least.  :)  

Coming back out of halt is messy -- it looks like the clocks aren't returned to their original states and so on. I'm probably going to need to implement some start-up code.  Heck, for my purposes, hooking into COLD for a complete reset will work too... That's what I'll try next.

Just wondering if you've worked on any of the low-power modes.  Either WFI (wait-for-interrupt) or the active-halt/AWU look tasty.

  Are you sure? yes | no

Thomas wrote 01/23/2017 at 19:14 point

That's great :-)

The power saving modes (like the watchdog) still are on my "important things that I plan to do" list. You know, that's the list on the sheet after "new and exciting things I want to play with", which in turn comes after "bugs I must fix now".

Let's put it on the "important new features for pilot applications" list :-) 

What we need is:

* a word HALT that contains the HALT instructionknow

* a word SLEEP, that stops unnecessary interrupts (user defined, and application specific). This word should run HALT. When the execution continues right after HALT, SLEEP shall re-enable "waking" interrupts

* if required a word to restore clock settings (RM0016 mentions something in 10.2.2 and in 9.9.4 "Clock master switch register (CLK_SWR)", but right now I don't undertsand why the clock changes)

Do you plan to trigger a wake-up through console events? The simulated COM port should support this use case!

  Are you sure? yes | no

Thomas wrote 01/23/2017 at 19:45 point

I added the HALT word, and it works better than expected. Here is a demo with a blinky:

    : g tim 40 and 0= out! ; ok
    ' g bg ! ok
    HALT
The when I press enter after HALT the LED stops flashing. The "ok" after HALT appears after I press enter a second time.

  Are you sure? yes | no

Elliot Williams wrote 01/24/2017 at 11:52 point

Woot!  

re: clocks: I read something somewhere sometime about them needing a reset.  I can't find that anymore.  I may be crazy.  

I saw some other STM8 code (http://blog.mark-stevens.co.uk/2014/06/auto-wakeup-stm8s/) that runs the AWU without re-clocking, strongly suggesting that I'm crazy.

That code, though, makes it look like (if interrupts are enabled) the AWU reset lands in the AWU ISR, which is uninitialized ($0000) in the vector table at $800C.

I just ran your BG example above, and it halts, but never returns until hit with a hard reset. I wonder if your code is working b/c it NOPs off to the next ISR and you got lucky.  Or does it actually try to execute whatever's at $0000?

So: how do we set up ISRs in eForth?  (Or, how do you write bytes directly to flash?)

  Are you sure? yes | no

Thomas wrote 01/24/2017 at 19:23 point

TL;DR: the quick-fix: an AWU "driver" that does it all but I would prefer a Forth solution and this requires some design decisions.

Long version:

Due to limitations in the SDCC tool chain any interrupt must be declared in main.c. Writing ISR vectors to Flash might work, but it requires a good approach for registering (and unregistering) interrupts to be viable (I'm thinking of RESET). Also Forth VM context switching would have to be done before executing any Forth code.

Another approach would be a "catchall" interrupt handler for several interrupts that then redirects to Forth code. This has the advantage that the context switch can be handled in a uniform way, but the dispatching won't be very efficient (or again a lookup).

This brings us to the next problem: some interrupt sources require resetting some bit in some peripherals control register. Leaving that to user code is very error prone, and a "catchall" interrupt handler would have to do it for all possible sources or leave it to user code.

What do you feel about of a middle way?
* Interrupt handler declared in main.c
* basic handler code in assembler or c to do a context switch, and to clear the trigger source
* handler code in Forth registered through something like BG

A last point: how many concurrent "Forth code interrupts" can we allow?
* Level0 we have the console
* on Level1 is the BG interrupt
* on Level2 is TIM4 (for COM simulation)

I guess that some stuff like TIM4 shouldn't have to compete with other code (the current code is efficient as it gets). Most likely it's possible to drop the interrupt level in BG code to Level0, and use Level1 for Forth handlers without character-I/O. The latency would still be in the lower µs range.

  Are you sure? yes | no

Elliot Williams wrote 01/25/2017 at 12:43 point

How does the 'BOOT mechanism work?  If you could do placeholders for the various ISRs like that, the user could write their handler function and store its address in the right place?  That seems very Forthy to me.  <code>: awu-isr stuff ; ' awu-isr ISR_AWU ! </code> or something.  One of these functions / memory locations per IRQ and you'd be done?

On resetting the flags as you leave the ISR: I think that should be user code rather than bloating up the system with it.  Yeah, it's going to hang the system if you do it wrong.  If I could count the number of times I've pressed the reset button...

On context switching in ISRs:  I'm not sure I understand the full details.  Unlike C, there's not necessarily any context to switch?  If the ISR maintains stack balance then there's no need for any context?  Leave whatever's on the stack, and it'll still be there when the interrupt is done?

For me, personally, I'd just be stoked to have a pointer to an address that I could set to execute when the AWU IRQ fires.  The rest, I can handle in code, I hope. :)  (Assuming that the return from interrupt works right.)

  Are you sure? yes | no

Thomas wrote 01/25/2017 at 20:20 point

'BOOT is simple: it returns the address of the "Parameter" field (like DOVAR). To safe code I used it to get the address of the whole following table of initialization values for USR variables. After switching to "NVM" it's possible to simply overwrite all these values. There is a 2nd copy to restore these values, e.g. to "forget" user vocabulary in Flash memory with RESET.

Yes, the 'BOOT method can be used in for interrupts, too, but that would require one more level of indirection.

About context switching:

my first approach was to re-use the Data Stack, but I quickly learned that X isn't always a valid Data Stack Pointer: it does that at the start and the end of a word, but not always in between ("always" is a very important attribute when writing interrupt code). Before implementing the background task, I tried  to make sure that X always represents a valid stack pointer in all primitive words. However, I failed to get it working until I started using a 2nd Data Stack for the background task (which I didn't like since it appears wasteful). Later on, I applied coding techniques that use X for reducing code size. Of course, it's possible to re-factor the code. It would be interesting to compare other multi-tasking Forth implementations. 

I went in a different direction: In several refactoring rounds I removed the following variables entirely: TEMP, XTEMP, PROD1, PROD2, PROD3, CARRY, and I also made the I/O context leaner.

Now, for code without character I/O only YTEMP must be saved. Otherwise also BASE, PAD, and HLD must be taken into consideration. And, of course, we need a stack. One approach would be to have a floating "stack pad" to work around the "X!=TOS" problem.

I guess it will take some time to implement a full featured solution for Forth interrupt handlers.

A minimal solution might look like this:
* a word IVEC! to set an interrupt vector
* a word SAVEC to save the context
* a word RESTC to restore the context, ends with IRET

The application could then define a word in the following way:  

: handler SAVEC ( some stuff ) RESTC ;

 ' handler 1 IVEC! \ set the AWU interrupt handler

Now that I'm looking at it, this doesn't look too bad.

Edit: I made some corrections, added some details, and added one more option for a solution

  Are you sure? yes | no

Thomas wrote 01/25/2017 at 22:23 point

I added the solution above for testing to the develop branch. Due to the mentioned limitations it's currently necessary to initialize the interrupt to priority low (0:1) (it shares the data stack with the ticker).

I also changed TIM4 to prio "highest", which might allow to implement all user defined interrupts with priority "high" later on. This would then require 3 data stacks with the sizes normal (console), medium (background task) and small (interrupt handler).

  Are you sure? yes | no

Thomas wrote 01/26/2017 at 20:48 point

@Elliot Williams:

Here is a starting point for Forth code user interrupts and AWU usage:

  nvm

  : awuint savec awu_csr1 c@ drop restc ;

  ' awuint 1 ivec!

  : initawu 38 awu_apr c! 1 awu_tbr c! 16 awu_csr1 c! ;

  ram

When I run HALT with this code, it returns immediately. Since I didn't find the time to make sense of the AWU configuration, I simply took the AWU timing values from the page you mentioned before.

Please not that this currently only works when I run HALT from the console (I still need a solution for the Data Stack problem). Running HALT from the background task would change the contents of the first element on the stack (which would work if the stack were empty).

A quick fix here is to assume that X represents TOS when HALT is executed (which is the case), and skip initializing the stack. Please note that this only works for HALT, and not in the general case.

  Are you sure? yes | no

Thomas wrote 01/23/2017 at 21:51 point

Changes are in the develpp branch on GitHub. The 2.2.6.snapshot release contains new binaries :-)

  Are you sure? yes | no

Youlian Troyanov wrote 01/26/2017 at 04:51 point

please write your long story about esp-14 :)

  Are you sure? yes | no

Thomas wrote 01/27/2017 at 22:19 point

Elliot, in order to get a simple and practical solution, I now propose the following:

1) In RAM code IVEC! (its only used once for setting an interrupt handler

: IVEC! ( a n - -  ) 2* 2* $800A + ! ;

2) Implement HALT as a user word:

: HALT  ( -- ) [ $8E C, ] ;

3) Implement your interrupt handler using SAVEC and RESTC (make sure not to use more than 8 cells on stack)

This will work for any interrupt. Please make sure to change the interrupt down from highest to high.

  Are you sure? yes | no

jaromir.sukuba wrote 01/23/2017 at 05:17 point

Another tip for *possible* STM8 target http://www.ebay.com/itm/12V-DC-Multifunktionsrelais-PLC-Cycle-Timer-Timing-Delay-Relay-Switch-Module-/131648915593

I didn't buy this one, haven't seen the schematics, but to me it totally smells like it could have STM8 under the display. Googling for XK-001T-1 didn't bring much info, though.

  Are you sure? yes | no

Thomas wrote 01/23/2017 at 06:18 point

Yes, that's possible. In most cases one won't find any schematics, and also the XH-, XK, M- or B monikers aren't always used the same. There is a small list of modules that are very likely STM8S based in the Details Section of this project (in the section "How can I spot suitable boards?"). If there is any interest, I can publish a list with advertised properties and the "street price".
Edit: here is a link with a picture showing the PCB legend:
https://www.aliexpress.com/store/product/Free-shipping-XK-001T-1-DC12V-Time-relay-board-count-voltage-testing-cycle-time-vehicle-charging/1548016_32656999267.html
Based on the outline of the µC I would expect it's not STM8 but a STC15 based, a µC which I've seen several times on "timer" boards (MCS51-like http://www.stcmcu.com/datasheet/stc/STC-AD-PDF/STC15-English.pdf)

  Are you sure? yes | no

Elliot Williams wrote 12/13/2016 at 23:13 point

Got my ESP-14 up and running last week, and then got distracted.  :)

Short story: it's just a STM8 chip and an ESP8266, like it says on the package.  The TX/RX lines are internally connected, so I was running your Forth on the STM8 with the ESP8266 powered down, and running all manner of software on the ESP with the STM8 powered down.

Been thinking about how to use both at once. 

a) Jeelink is a nice transparent serial port over ESP8266, which would provide remote wireless development of the Forth system on the STM8.  The idea of telnetting over WiFi into an STM8 is funny enough that I'm definitely going to do this.

b) Since the serial port is the only way in to the ESP8266, and the STM8 has only that one hardware serial port, I suppose that bit-banged serial or I2C/SPI could be used to talk to the console. I don't know how hard/easy this is. But then you'd have an STM8 that could issue AT WiFi commands, for instance, or run routines in NodeMCU, which might be very cool.

c) The other option is to code up the ESP and STM8 to take turns based on control characters: 0xFE toggles the ESP on/off the line, and 0xFF toggles the STM8, for instance.   This requires modifying _both_ firmwares, but would allow for the console, ESP, and STM8 to share the UART lines and talk to each other.

Just brainstorming so far. No real hacking yet. 

The breakout board I made for the module just fit it onto a breadboard, because I didn't really know what to expect from the module. It will probably want a transistor so that the STM8 can turn off the ESP8266 for power-saving when necessary, and will certainly want at least a jumper for flashing the ESP.  

Thanks for the case insensitive addition, and for do loops! This is a fun system to play around with.

  Are you sure? yes | no

Thomas wrote 12/14/2016 at 19:31 point

Options a) and b) look good to me, especially in combination. How about connecting a PNP transistor for the ESP8266 power supply to PD1/SWIM? Normally one would access the STM8 serial port through ESP-Link, and the ICP interface could be used for direct access to the ESP8266 serial interface by simply pulling down both NRST and PD1/SWIM. Direct serial access to the STM8 could be acchieved by telling it to power the ESP8266 down (this might even work using PD1/SWIM once more, e.g. by using an RC element which can be detected testing its timing).

Option c) would also be possible, but at least one of the devices would have to be able to swap RxD and TxD, and the other devices would need a "tristate" mode on TxD. The Bus approach I took for the W1209 might also work for more than two devices.

A fourth option could be to have a Forth word that issues the initialization AT commands on the STM8, and execute it with 'BOOT.

I hope to find the time for some hardware hacking in the holiday season :-)

  Are you sure? yes | no

Elliot Williams wrote 12/16/2016 at 21:22 point

"esp-link" not jeelink.  https://github.com/jeelabs/esp-link  Tried it and had a telnet / web-console controllable STM8 running your Forth.  Took like 10 minutes.

Then I spent 3 hours trying to implement something like c) in NodeMCU.

First, I thought I'd set up two TCP connections: one for the ESP to be executed locally, and one to pass through to the STM8.  Didn't work b/c NodeMCU can only do one TCP connection, it seems.

Then I thought I'd use MQTT as the transport mechanism.  But there's some glitch there with MQTT and the UART port not working right.  I'll hack more at it before I give up, but it might be time to move on to MicroPython or ESP Basic for the interactive ESP part.

Anyway, try out the esp-link for the ESP when you get around to it.  It's kinda fun.  It _does_ however leave me wanting a more capable microchip on the remote end.  For another couple bucks, I could get a lot more flash, peripherals, and etc to tether to the ESP.

All of this playing around has helped me refine what's needed in a breakout board for this thing, though.  :)

  Are you sure? yes | no

Thomas wrote 12/16/2016 at 22:35 point

Again great news, and I'm going to test esp-link too. Multiplexing communication through MQTT topics was the first thing that came to my mind. About a year ago I tried working with MQTT and NodeMCU, but I was disappointed with the stability of the platform (though I really liked working with Lua).
I guess that the case for ESP-14 is rather thin: as I mentioned before, it looks more like proof that the ESP8266 wasn't able to meet customer requirements than like the solution the world's been waiting for. But who cares as long as it's fun hacking.
In my opinion, a decent Forth environment on the ESP8266 would be rather attractive: C.H. Ting hacked something recently, but it was just the kernel, not a complete framework with persistent vocabulary (and maybe even with source stored in the Flash memory, and maybe even a JavaScript based IDE served from an embedded web server on the chip).

  Are you sure? yes | no

Thomas wrote 11/28/2016 at 21:33 point

Hi Elliot, it's great to hear that someone got it running, and that the docs were good for a smooth start. Anyhow, congrats for the "STM8EF Blinky"! Did you try to do that BG style, too? 

I had a look at the CAPS issue (yes, I've been thinking about that for a while ;-) ). There are some potential clashes (e.g. PARSE/parse, NEXT,next, ABORT"/abort") but the lowercase words are the hidden "implementation part", and I don't see that their name is set in stone. I decided to name them after their assembly labels (pars, donxt, and aborq). 

New code with lowercase support is on GitHub (just set CASEINSENSITIVE = 1 in globconf.inc). If you'd like to give it a try without building, please let me know (I can drop a binary into the files section here). If there are no issues I'll make it the default.

The ESP-14 will be one of my next targets. However, I didn't find the time to make a breakout PCBs with power supply for this module. Controlling the ESP8266 supply through the STM8S003F3 would be cool. If someone with good access to PCB prototyping could do that job I'd be more than happy to contribute some ideas about the schematics.

  Are you sure? yes | no

Elliot Williams wrote 11/29/2016 at 15:57 point

I just got an ESP-14 in the mail from ebay today.  I'll be making a breakout for it sometime in early Dec.  (Right now, I'm churning out HaD articles like mad.)  I'll share when I do.

I still have no idea if it makes any sense to run a (powerful) ESP8266 off of a (much smaller) STM8 chip.  But I'm willing to find out.  :)

I also ordered one of those LED/relay boards. Again, just for fun, but maybe I'll do something with it.

Thanks for thinking about caps.  I'll definitely rebuild and reflash. 

No, I didn't get into the multitasking / backgrounding. I just got the thing up and running, not much more.

  Are you sure? yes | no

Thomas wrote 11/29/2016 at 19:13 point

The ESP-14 is quite strange. I can only guess that an OEM required a solution from Espressif that meets non-functional constraints (e.g. dependability, power consumption, or periphery set) that could not be met by the ESP8266. I don't think that a lack of skilled programmers was the reason. The power consumption of the STM8S003F3 in "active halt mode" is quite low, and for a data logging sensor node a battery life of a year or more with a 100mAh battery might be feasible.

The W1209 boards are really fun, especially with a background task. When you try using STM8EF with it, please let me know if the docs for the single wire half-duplex solution are sufficient.

About the case-insensitive input: you're welcome (the option has a price tag with "23 bytes" on it :-) )

  Are you sure? yes | no

RigTig wrote 12/15/2016 at 10:44 point

I've created an adapter for ESP14 (and ESP12) to 22-pin DIL, if you haven't done anything else yet (see new project here called 'ESP-12 and ESP-14 adapter to DIL'). My ESP14s arrived today!

  Are you sure? yes | no

Elliot Williams wrote 11/28/2016 at 13:54 point

Hiya! Been following along, finally got a few minutes to flash stuff to one of those min-dev boards.  Great fun!  I haven't done anything useful with it yet, but I've gotten the LED blinking, naturally.

One thing that's driving me nuts is the ALL CAPS commands.  Is there an easy way to either a) lower-case them all or b) make it run case insensitively?  Or would that cause namespace clashes? It makes my shift-finger hurt. 

And that's it for now.  I have to say that your directions (combined with some of the links that you list) made it very easy to get up and running with the system.  Thanks!

I'm planning a few Forth columns for HaD, and I'm still collecting chips that have working implementations.  You've added one more to the list. 

Oh, and I've ordered an ESP-14.  We'll see how that goes.  Looks like fun. 

  Are you sure? yes | no

Similar Projects

Does this project spark your interest?

Become a member to follow this project and never miss any updates